Если ещё не изучено понятие производной, то решение может быть таким:
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
400 : 34 = 12 (кг) фруктов купили
Если нужно узнать сколько груш и сколько яблок:
За Х - количество килограммов яблок,
за У - количество килограммов груш
Решаем :
30х + 38у = 400
х + у = 12
из второго уравнения:
х = 12 - у
подставляем в 1 уравнение :
30 * (12 - у) + 38у = 400
360 - 30у + 38у = 400
8у = 40
у = 5 (кг) купили груш
подставляем во 2 уравнение:
х + 5 = 12
х = 12 - 5
х = 7 (кг) купили яблок
Проверка
(30 * 7) + (38 * 5) = 210 + 190 = 400 р - заплатили
ответ: 400 рублей
x/2-5x-14=0
x-10x-28=0
-9x-28=0
x=-28/9
x=-3,1