Доброта - это бескорыстная забота и внимание о ком-то. В рассказе "Юшка" автор показывает поистине добрым человеком самого героя, который прощал всем оскорбления и побои, а самое главное бедной сироте. Юшка сам себе во многом отказывал, довольствовался малым, трудился, чтоб девочке, дать ей образование. "Там девушка припала к земле, в которой лежал мертвый Юшка, человек, кормивший ее с детства, никогда не евший сахара, чтоб она ела его." Все его старания были не напрасны, потому что девочка стала доброй и милосердной девушкой-врачом. Люди, бившие его, грубившие ему, надсмехающиеся над ним при его жизни, теперь зауважали его после смерти и стал он -Ефим Дмитриевич. Девушка-врач как и Юшка стала лечить людей их за жестокость в отношении ее благодетеля. Юшка помимо образования смог передать сироте нечто большее- это желание бескорыстно людям, творить добро. Значит доброта - это любовь к своим ближним.
Объяснение:
решите систему уравнений методом подстановки общая скобка один пример сверху другой снизу 3x-y=-5. -5x+2y=1, т. е из одного уравнения выразить одну переменную и подставить во второе. Из двух уравнений проще выразить из первого у, т. к. коэффициент равен 1, получим
3x-y=-5
-5x+2y=1
Выражаем у из первого уравнения и ставим во второе
у=3х+5
-5х+2(3х+5)=1
Раскрываем скобки
у=3х+5
-5х+6х+10=1
Приводим подобные
у=3х+5
х+10=1
Отсюда
у=3(-9)+5
х=1-10
Или решением неравенства будет пара
у=-22
х=-9
Проверка
3(-9)-(-22)=-5
-5(-9)+2(-22)=1
Произведем вычисления
-27+22=-5
45-44=1
или
5=-5
1=1
Т. к. получили верное равенство, значит, решили правильно
ответ: х=-9 и у=-22 или (-9;-22)
Удачи!
Объяснение:
Степень с рациональным показателем Степень с рациональным показателем. Решение примеровЛекция: Степень с рациональным показателем и её свойстваСтепень с рациональным показателемСтепень с рациональным показателем - это та, в показателе которой находится конечная обыкновенная или десятичная дробь. Любую степень с рациональным показателем можно представить в виде корня, чья степень будет равна знаменателю дроби, находящейся в показателе степени, а числитель будет степенью подкоренного выражения.Свойства степени с рациональным показателемВсе, перечисленные ниже степени используются для рациональных чисел p, q и для положительных a, b.1. Если Вам необходимо умножить две степени с рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.ap * aq = ap+q.Например:2. Если необходимо разделить две степени c рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть.ap / aq = ap-q .Например,3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.(ap )q = ap*qНапример,4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.(a * b)p = ap * bp5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.(a / b)p = ap / bq6. Если некоторая дробь имеет отрицательный рациональный показатель степени, то для избавления от знака минуса, её следует перевернуть.Например,Очень важно помнить, что знак степени не влияет на знак выражения при возведении в степень