Пусть а см - сторона квадрата и меньшая сторона прямоугольника, а b см - бОльшая. Тогда исходя из того, что периметр прямоугольника равен 28 см, а площадь его больше площадь квадрата со стороной а на 12 см², составим систему: 2(а + b) = 28 ab - 12 = a²
a + b = 14 ab - a² = 12
b = 14 - a a(14 - a) - a² = 12
b = 14 - a 14a - a² - a² - 12 = 0
b = 14 - a a² - 7a + 6 = 0
b = 14 - a a² - 3,5•2a + 12,25 - 6,25 = 0
b = 14 - a (a - 3,5) - 2,5² = 0
b = 14 - a (a - 3,5 + 2,5)(a - 3,5 - 2,5) = 0
a = 1 и b = 13 a = 6 b = 8
Значит, стороны прямоугольника равны 6 см и 8 см или 1 см и 13 см. ответ: 6 см и 8 см или 1 см и 13 см.
Пусть неизвестное целое число равно х, тогда х-1 и х+1 - целые числа, расположенные слева и справа от числа х, соответственно. По условию, сумма квадратов данных чисел равна 869. Составим уравнение: (х-1)²+х²+(х+1)²=869 х²-2х+1+х²+х²+2х+1=869 3х²+2=869 3х²=869-2 3х²=867 х²=867:3 х²=289 х= x=
1) x=17 x-1=17-1=16 x+1=17+1=18 Получаем, 16, 17 и 18 - три последовательных целых числа Проверка: 16²+17²+18²=256+289+324=869 2) х=-17 х-1=-17-1=-18 х+1=-17+1=-16 Получаем, -18, -17 и -16 - три последовательных целых числа Проверка:(-18)²+(-17)²+(-16)²=324+289+256=869
2(а + b) = 28
ab - 12 = a²
a + b = 14
ab - a² = 12
b = 14 - a
a(14 - a) - a² = 12
b = 14 - a
14a - a² - a² - 12 = 0
b = 14 - a
a² - 7a + 6 = 0
b = 14 - a
a² - 3,5•2a + 12,25 - 6,25 = 0
b = 14 - a
(a - 3,5) - 2,5² = 0
b = 14 - a
(a - 3,5 + 2,5)(a - 3,5 - 2,5) = 0
a = 1 и b = 13
a = 6 b = 8
Значит, стороны прямоугольника равны 6 см и 8 см или 1 см и 13 см.
ответ: 6 см и 8 см или 1 см и 13 см.