Объяснение:Рассмотрим левую часть неравенства,т. е. функцию
f(x)=(2-x)x/(x-3)
D(f)=(-∞;3)∪(3;+∞)
нули функции: (2-х)х=0 ⇒х=0 или х=2
на числовсй прямой обозначаем обл. определения,нули функции(т.х=2 и х=0 темные точки,х=3---светлая выколотая точка)
·0 ·2 °3→
+ - + -
в полученных интервалах расставим знак функции f(x), проверяя подстановкой числа из конкретного интервала ,например,
f(4)=(2-4)·4/(4-3)<0, f(2,5)>0, f(1)<0, f(-2)>0--- обрати внимание на чередование знаков (но не всегда так будет!)
ответ:х∈(-∞;0]∪[2;3)(ведь у нас неравенство ≥0,берем интервалы со знаком +)
Хотя для школы задача действительно может казаться не очень тривиальной.
начальное условие:
(N1+N2)8=A
N1*t=A
N2(t+12)=A
A/N1 = ?
A/N2 = ?
из второго выражаем
t=A/N1
подставляем в третье
N2(A/N1+12)=A
итого система из 2 уравнений:
(N1+N2)8=A
N2(A/N1+12)=A
из первого выражаем
A/8 - N1 = N2
Подставляем N2 во второе, далее идут его преобразования
(A/8 - N1)(A/N1+12)=A
A^2/8N1 +A/2 -12N1 = A
A^2 - 4AN1 -12N1*8N1 = 0
преобразовываем, преобразование выполняется решением квадратного уравнения
A^2 - 4AN1 -12N1*8N1 = (A-12N1)(A+8N1)
итого
корни
-8N1
12N1
отрицательный корень не имеет физического смысла
(A-12N1)(A+8N1)=0
A=12N1
A/N1=12 - искомое время
подставляя это в исходное N2(A/N1+12)=A
получаем
N2(12+12)=A
A/N2=24 - второе искомое время