Физический процесс протекает во времени, поэтому все физические формулы, описывающие явления материального мира во времени являются функциями, описывающими реальные физические процессы. В такие уравнения время входит в качестве переменного параметра, а не константы (как, например, в формуле для периода), либо входит опосредованно в другие величины, такие, например, как скорость, электрический ток и т.п. Некоторые уравнения описывают процессы и одновременно состояния, а поэтому не содержат непосредственно в себе параметра времени, а лишь показывают некоторые частные состояния системы, как, например уравнение Менделеева-Клайперона (уравнение идеального газа).
Уравнение равномерного движения – это функция, описывающая реальный физический процесс равномерного движения:
;
Уравнение равномерного прямолинейного движения – это функция, описывающая реальный физический процесс прямолинейного движения в векторном виде:
;
Следствие для скорости из уравнения определения ускорения – это функция, описывающая реальный физический процесс равномерного изменения скорости:
либо в векторном виде: ;
Уравнение равнопеременного движения – это функция, описывающая реальный физический процесс равнопеременного движения:
либо в векторном виде: ;
Второй Закон Ньютона – это функция, описывающая реальный физический процесс динамики движения:
либо в векторном виде: ;
Уравнение равномерного движения по окружности – это функция, описывающая реальный физический процесс равномерного движения по окружности:
;
Уравнение движения при гармонических колебаниях – это функция, описывающая реальный физический процесс гармонического колебания:
;
Следствие для скорости из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения скорости в гармоническом колебании:
;
Следствие для ускорения из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения ускорения в гармоническом колебании:
;
Следствие для энергии из уравнения определения теплоёмкости – это функция, описывающая реальный физический процесс нагревания:
где либо в удельном виде: ;
Следствие для энергии из уравнения определения теплоты плавления и кристаллизации – это функция, описывающая реальный физический процесс плавления и кристаллизации:
;
Следствие для энергии из уравнения определения теплоты парообразования и конденсации – это функция, описывающая реальный физический процесс парообразования и конденсации:
;
Следствие для энергии из уравнения определения теплоты горения – это функция, описывающая реальный физический процесс горения:
;
Уравнение идеального газа – это многопараметрическая функция, описывающая все физические процессы газов низких давлений:
;
Уравнения определения тока – это функция, описывающая реальный физический процесс движени заряженных частиц:
;
Закон Фарадея – это многопараметрическая функция, описывающая гальванический процесс:
где ;
Закон Ома – это функция, описывающая реальный физический процесс движения заряженных частиц в однородном проводнике:
;
Закон Джоуля-Ленца – это функция, описывающая реальный физический процесс превращения энергии в электрических цепях:
либо в мощностном виде: ;
Закон Ампера (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на проводник с током:
;
Закон Лоренца (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на движущуюся частицу:
;
Закон Фарадея-Ленца электромагнитной Индукции (Третий Закон Максвелла) – это функция, описывающая реальный физический процесс порождения вихревого электрического поля при изменении магнитного поля:
Примем за х количество дней, необходимых 1-й бригаде на постройку, а объем работы за 1, тогда производительность бригады будет равна 1/х, по условию задачи 2-й бригаде нужно х+5 дней, значит ее производительность 1/(х+5). Работая вместе бригады справились с работой за 6 дней, т.е. первая сделала 6/х, а вторая 6/(х+5). Составим и решим уравнение: ОДЗ: х≠0 и х≠-5 6х+6(х+5)-х(х+5)=0 6х+6х+30-х²-5х=0 -х²+7х+30=0 х²-7х-30=0 по теореме Виета ; т.к. время не может иметь отрицательное значение, то х=-3 не подходит, значит х=10, т.е. 10 дней понадобится 1-й бригаде на постройку кошары самостоятельно ⇒ 2-я бригада затарат х+5=10+5=15 дней.
Объяснение:
а) (7x²y)/(7x)=xy
б) (y²-9)/(y-3)=((y-3)(y+3))/(y-3)=y+3
в) (u+2)/(u²-4)=(u+2)/((u-2)(u+2))=1/(u-2)
г) (x²-16)/(x+4)=((x-4)(x+4))/(x+4)=x-4
д) (t²-2t)/(t²+t-6)=(t(t-2))/(t²+t-2-4)=(t(t-2))/((t²-4)+(t-2))=(t(t-2))/((t-2)(t+2)+(t-2))=(t(t-2))/((t-2)(t+2+1)=t/(t+3)
е) (u²+3u-4)/(2u²+u-3)=(u²-u+4u-4)/(2u²-2u+3u-3)=(u(u-1)+4(u-1))/(2u(u-1)+3(u-1))=((u-1)(u+4))/((u-1)(2u+3))=(u+4)/(2u+3)