М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Мюсли004
Мюсли004
24.09.2021 01:53 •  Алгебра

Профессии где нужны декартовые координаты

👇
Открыть все ответы
Ответ:
Викa2003648219
Викa2003648219
24.09.2021

1. Будем доказывать методом математической индукции.

Проверяем истинность утверждения при n = 1:

а) 2*49 + 16 + 40 = 154 = 11*14  -  делится на 11.

б) Предположим, что 2*7^(2k) + 16^k +8*5^k   - делится на 11. Где k - произвольное натуральное число.

в) Докажем, что тогда при n = k+1 полученное выражение - тоже делится на 11:

2*7^{2k+2}+16^{k+1}+8*5^{k+1}=49*(2*7^{2k})+16*16^k+5*(8*5^k)=

5(2*7^k+16^k+8*5^k)+(44*(2*7^{2k})+11*16^k)

Теперь четко видно что оба больших слагаемых делятся на 11:

первое - исходя из предположения, второе - имеет 11 как общий сомножитель для своих слагаемых.

Итак мы доказали , что если при произвольном n= k выражение делится на 11, то и при n = k+1 выражение делится на 11.

Значит исходное выражение делится на 11.  что и требовалось доказать.

2)(a+1)x^2-(2a+5)x+a=0,\ \ \ \ D=4a^2+20a+25-4a^2-4a=16a+25

D>0    a>-25/16   a>-1,5625

x_{1}=\frac{2a+5+\sqrt{16a+25}}{2(a+1)}-1

x_{2}=\frac{2a+5-\sqrt{16a+25}}{2(a+1)}-1

Разбиваем ОДЗ на две части:

а) (-1; беск)

2a+5+\sqrt{16a+25}-2a-2

2a+5-\sqrt{16a+25}-2a-2

 

\sqrt{16a+25}-4a-7

\sqrt{16a+25}<4a+7

Первое из написанных неравенств верно. Проверим второе:

16a+25<16a^2+56a+4916a+25<16a^2+56a+49,\ \ \ \ 16a^2+40a+240,\ \ D=64

Корни  -1; -1,5   Решение с учетом ОДЗ: (-1; беск)

б) (-1,5625; -1)

{2a+5+\sqrt{16a+25}}<-2a-2

2a+5-\sqrt{16a+25}<-2a-2

 

\sqrt{16a+25}<-4a-7

Правая чать на выбранной области - отрицательна, что недопустимо. Здесь решений нет.

ответ: (-1; бескон).

3.

[\sqrt{1-sin^2153}+\sqrt{tg^2207-sin^2207}]sin63=[-cos153+\frac{sin^2207}{-cos207}]sin63

=[sin63+\frac{cos^263}{sin63}]sin63=sin^263+cos^263=1

ответ: 1

 

4,7(2 оценок)
Ответ:
Karbobo
Karbobo
24.09.2021

Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)


Решим к примеру x^7=x+6 уравнение в действительных корнях.

Рассмотрим функцию y=x^7. Эта функция является возрастающей на всей числовой прямой.

Также рассмотрим правую часть уравнения: функцию y=x+6. Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).


графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.


Возьмем теперь к примеру уравнение ax^2+bx+c=0,~~ a\ne0

D=b^2-4ac

Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.

Если D=0, то квадратное уравнение имеет два равные корни.

Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.


Как узнать, сколько корней имеет уравнение? к примеру x^7=x+6
4,4(46 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ