1. −(a+b)−(c−d)−(e−f)=−a-b−c+d−e+f
2. (8ab+3b)−(6ab−3b)+4a=8ab+3b−6ab+3b+4a=2ab+6b+4а
если a=6 и b=3. 2*6*3+6*3+4*6=36+18+24=78
3. 0,2x²+0,04y² +0,16x²−0,07y²=0,36x²-0,03y²
(0,2x²+0,04y²) -(0,16x²−0,07y²)=0,2x²+0,04y²-0,16x²+0,07y=0.11у²+0.04х²
4. (9a−13b+29c)−(−24a+29b−24c) =9a−13b+29c+24a-29b+24c=33а-42b+53с
5. (637d−214d²)+(114d²−137d)= 637d−214d²+114d²−137d=500d-100d²
6. 16−(7h+5)+4= 16−7h-5+4=15−7h
7. (x²−4x+3)−(3x−2x²+4)=x²−4x+3−3x+2x²-4=3х²-7х-1; если x=2.
3х²-7х-1=3*2²-7*2-1=12-14-1=-3
8. x³+3x²−x+4x³+2x²−x +5x²−3x³+4x =2x³+10x²+2х
9. это 42, т.к. 42-24=18
1. −(a+b)−(c−d)−(e−f)=−a-b−c+d−e+f
2. (8ab+3b)−(6ab−3b)+4a=8ab+3b−6ab+3b+4a=2ab+6b+4а
если a=6 и b=3. 2*6*3+6*3+4*6=36+18+24=78
3. 0,2x²+0,04y² +0,16x²−0,07y²=0,36x²-0,03y²
(0,2x²+0,04y²) -(0,16x²−0,07y²)=0,2x²+0,04y²-0,16x²+0,07y=0.11у²+0.04х²
4. (9a−13b+29c)−(−24a+29b−24c) =9a−13b+29c+24a-29b+24c=33а-42b+53с
5. (637d−214d²)+(114d²−137d)= 637d−214d²+114d²−137d=500d-100d²
6. 16−(7h+5)+4= 16−7h-5+4=15−7h
7. (x²−4x+3)−(3x−2x²+4)=x²−4x+3−3x+2x²-4=3х²-7х-1; если x=2.
3х²-7х-1=3*2²-7*2-1=12-14-1=-3
8. x³+3x²−x+4x³+2x²−x +5x²−3x³+4x =2x³+10x²+2х
9. это 42, т.к. 42-24=18
Первый пример объясню поподробнее, чтобы было понятнее, как и зачем.
Объяснение: A) 2х² + 3х + 1 = 0.
Обе части разделим на 2, чтобы выделить "чистенький" квадрат икса:
Для того, чтобы решить выделением полного квадрата нужно представить левую часть в виде квадрата суммы. Одно число для этого - х - у нас уже есть. Ищем второе - пусть оно равно b. В нашем случае 3/2 х это по сути удвоенное произведение 2аb (a = x). Теперь мы можем найти b.
До полного квадрата нам не хватает одного слагаемого -
. Чтобы "влепить" его в наше равенство, прибавим его к левой части. Однако нужно обязательно его вычесть, потому что нужно как-то компенсировать подобный переход.
Перепишем наше уравнение в следующем виде:
.
Первые три слагаемые образуют квадрат суммы. Последние два перекинем вправо с противоположным знаком:
Если решить дискриминантом, то можно легко убедиться в том, что корни найдены верно.
б) 2х² + x + 2 = 0;
Квадрат вещественного числа не может быть отрицательным. Делаем вывод: корней уравнение не имеет.
В) 9x²+6x+1=0.
Чистый квадрат суммы: (3x+1)²=0; 3x+1 = 0 ⇒
Г) х² + 5x - 6 = 0