Петя записал число n и перестановке цифр в данном числе получил число m, которое оказалось в 3 раза меньше а) обязательно ли n должно делиться на 9 б) обязательно ли n должно делиться на 27?
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Решение: Расстояние от пункта А до пункта В составляет S (км) Автомобили двигаясь навстречу друг другу, встретились через t (часов), причём каждый из них проехал расстояние: -первый автомобиль S1 (км) -второй автомобиль S2 (км) Следовательно расстояние от пункта А до пункта В составляет: S=S1+S2 Значит первому автомобилю чтобы доехать до пункта В, осталось преодолеть расстояние S2 Каждый из автомобилей проехал расстояние S1 и S2 за t (часов), -первый автомобиль за время t со скоростью 80км/час проехал расстояние: S1=80*t --второй автомобиль за время t со скоростью 70км/час проехал расстояние: S2=70*t Из условия задачи следует,что через час после встречи ( а первый автомобиль двигаясь со скоростью 80км/час, проехал за 1 час расстояние 80км), осталось проехать ещё 60км, значит: S2=80км+60км=140км, получилось, что S=S1+S2=(80t+140) км t можно найти: S2/V=140/70=2 (часа) Подставим значение t=2 в формулу: S=80t+140 S=80*2+140=160+140=300 (км)
ответ: Расстояние от пункта А до пункта В составляет 300км
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так