Расстояние между А и В: S км
Время на первом участке: t₁ = 2 ч.
Время на втором участке: t₂ = 1 1/3 ч. = 4/3 ч.
Скорость автомобиля на первом участке пути:
v₁ = S₁/t₁ = 2S/3 : 2 = S/3 (км/ч)
Скорость автомобиля на втором участке пути:
v₂ = S₂/t₂ = S/3 : 4/3 = S/4 (км/ч)
По условию:
v₁ - v₂ = 15
S/3 - S/4 = 15
4S/12 - 3S/12 = 15
S/12 = 15
S = 12 · 15 = 180 (км)
ответ: 180 км.
Это арифметическая прогрессия.
a1 = 1; d = 1; любое a(n) = n.
Нужно найти такое n, что S(n) <= 235; S(n+1) > 235.
{ S(n) = (a1 + a(n))*n/2 = (1 + n)*n/2 <= 235
{ S(n+1) = (a1 + a(n+1))*(n+1)/2 = (1 + n + 1)(n + 1)/2 > 235
Получаем
{ (n + 1)*n <= 470
{ (n + 2)(n + 1) > 470
Раскрываем скобки
{ n^2 + n - 470 <= 0
{ n^2 + 3n - 468 > 0
Решаем квадратные неравенства
{ D = 1 + 4*470 = 1881 ≈ 43,4^2
{ D = 9 + 4*468 = 1881 ≈ 43,4^2
Как ни странно, дискриминанта получились одинаковые.
{ n = (-1 + 43,4)/2 <= 21
{ n = (-3 + 43,4)/2 > 20
ответ 21.
1) пусть х кг - вес третьего слитка, у кг - вес меди в третьем слитке.
по условию в 1-ом слитке 48% меди, тогда 4·0,9 = __ (кг) - чистой меди в первом слитке.
по условию во 2-ом слитке тоже 30% меди, тогда 9·0,9 = __ (кг) - чистой меди во втором слитке.
2) если первый слиток сплавили с третьим, то вес получившегося слитка равен (4 + х) кг, а количество в нём меди - + у) кг.
по условию содержание меди при этом получилось равным 48%.
3) если второй слиток сплавить с третьим, то вес получившегося слитка равен (9 + х) кг, а количество в нём меди - (0,81 + у) кг.
по условию содержание меди при этом получилось равным 36%.
4)сложив почленно обе части уравнения, получим, что
__ кг - вес третьего слитка
__ кг меди в третьем слитке
5) найдём процентное содержание меди в третьем слитке:
% меди в третьем слитке.
ответ: __ %.