О арифмитических свойствах монотонных функций, так y=x^3 возростает на всей действительной оси, то y=2x^3 возростает на всей действительной оси, и y=2x^3+4 возростает на всей действительной оси С производной:y'=(2x^3+4)'=(2x^3)'+(4)'=2(x^3)'+0=2*3x^2=6x^2>=0, причем равенство достигается для единственной точки х=0, а значит функция строго возростающая По определению Пусть x2>x1. Тогдаy(x2)-y(x1)=(2(x2)^3+4)-(2(x1)^3+4)=2(x2)^3+4-2(x1)^3-4=2((x2)-(x1))((x1)^2+(x1)(x2)+(x2)^2) >0 так как 2>0 (очевидно) ((x2)-(x1)>0 по условию, (x1)^2+(x1)(x2)+(x2)^2>0 так как неполный квадрат двух разных чисел всегда положителен), произведение трех положительных чисел положительноа значит данная функция строго возростающая.Как-то так
Длину дистанции обозначим S м. Скорость Маши v(M) = S/35 м/мин Скорость Коли v(K) = S/28 м/мин Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4 Если бы они начали одновременно, то Коля пробежал бы 5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли. А на самом деле Маша пробежала 0,75 от пути Коли. Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м. А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4 x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши. 3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше. Пусть Коля начал раньше на а мин. Значит, когда Маша начала, он уже пробежал а/35 часть пути. Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части. Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от старта Маши до встречи. А всё вместе он пробежал 4/7 пути. a/35 + 5(35-a)/315 = 4/7 Умножаем всё на 315 = 35*9 = 45*7 9a + 175 - 5a = 4*45 = 180 4a = 5 a = 5/4 Ближе всего это к 1 мин. Видимо, правильный ответ: Г) Коля на 1 мин раньше.
Объяснение:
вот и все