М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anet1983
anet1983
16.07.2020 09:03 •  Алгебра

1.50. верно ли, что любое простое число, больпее 3, можно представить в виде 6n-1 или 6n+1? bерно ли обратное утверждение?

👇
Ответ:
auviktory
auviktory
16.07.2020

верно , обратное нет

Объяснение:

пусть р - простое , рассмотрим остатки от деления р на 6 :

 p = 6b + q ,  где  0 ≤ q ≤ 5 , если q = 2 ,  то p = 2(3b+1) , это

число четно и больше 2 , значит не простое , если q = 3 , то    

p = 3(2q+1) ,  это число кратно 3 и больше 3 и значит также не

простое , если q = 4 ,  то p = 2( 3b + 2) , это число четно и

больше 2 и следовательно не простое , если q = 0 , то p

 кратно 6 и не может быть простым , остаются 2 варианта : 1)

q= 1 ,  то есть p = 6b+1   и 2) q = 5 ⇒ p = 6b + 5 = 6b+6-1 =    

6(b+1) - 1 = 6k -1 ,  а значит любое простое имеет вид :  p = 6n±1

обратное утверждение неверно :  например число 35 = 6·6 - 1

, но простым число 35  не является

4,7(6 оценок)
Открыть все ответы
Ответ:
dionis01
dionis01
16.07.2020
Менің ойымша:Тригонометриялық функциялар - бұрыш функциялары. Оларды екі жақтың қатынасы мен үшбұрыштың бұрышы немесе шеңбер нүктелерінің координаталарының қатынасы ретінде анықтауға болады. Олар периодтық функцияларды және көптеген объектілерді зерттеуде маңызды рөл атқарады. Мысалы, серияларды, дифференциалдық теңдеулерді зерттеуде. Мұнда алты негізгі тригонометриялық функция бар. Соңғы төртеу алғашқы екеуі арқылы анықталады. Басқаша айтқанда, олар жеке құрылымдар емес, анықтамалар.синус (sin α). косинус (cos α). тангенс (tg α = sin α / cos α)котангенс (ctg α = cos α / sin α). секанс (sec α = 1 / cos α). косеканс (cosec α = 1 / sin α).
4,6(98 оценок)
Ответ:
AnnaFruzanna
AnnaFruzanna
16.07.2020

Объяснение:

максимума называется локальным максимумом, значение функции в точке минимума - локальным минимумом данной функции. Локальные максимум и минимум функции называются локальными экстремумами.

Точка x0 называется точкой строгого локального максимума функции y=f(x), если для всех x из окрестности этой точки будет справедливо строгое неравенство f(x)<f(x0).

Точка x0 называется точкой строгого локального минимума функции y=f(x), если для всех x из окрестности этой точки будет справедливо строгое неравенство f(x)>f(x0).

Наибольшее или наименьшее значение функции на промежутке называется глобальным экстремумом.

4,5(29 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ