sinx·cosx = -√3/4 потому что cos(-x) = cosx
1/2·sin2x = -√3/4 формула синуса двойного угла: sin2x = 2sinx·cosx
sin2x = -√3/2 умножили на 2 обе части
2x = (-1)^(n+1)·π/3 + πn , n∈Z
x = (-1)^(n+1)·π/6 + πn/2 , n∈Z - ответ
(-1)^(n+1) - это "минус единица в степени (n + 1)@
2sin(x/2)cos(x/2)+cos²(x/2)-sin²(x/2)-sin²(x/2)-cos²(x/2)=0
2sin(x/2)cos(x/2)-2sin²(x/2)=0
2sin(x/2)*(cos(x/2)-sin(x/2))=0
sin(x/2)=0⇒x/2=πn⇒x=2πn,n∈z
cos(x/2)-sin(x/2)=0/cos(x/2)
1-tg(x/2)=0
tg(x/2)=1⇒x/2=π/4+πk⇒x=π/2+2πk,k∈z
Объяснение:
ответ: 3
Объяснение: Для простоты работайте по действиям.
1. Упростите выражение в скобках:
Сначала в знаменателях дробей внутри скобок вынесите общий множитель "а", получите знаменатели в 1-ой дроби а(а+3в), а во второй дроби а(а-3в); приведите эти две дроби к общему знаменателю, домножив 1-ю дробь на (а-3в),а 2-ю на (а+3в).
Получите одну дробь со знаменателем а(а²-9в²), а в числителе -
(а-3в)² - (а+3в)²,раскройте в числителе скобки и приведите подобные слагаемые, получим числитель дроби -12ав,а в знаменателе замените а(а²-9в²) на -а(9в²-а²) для того, чтобы позже легче сократить овую дробь.
2) Полученный ответ надо разделить на следующую дробь или умножить на обратную. После сокращения получите -12ав/-4ав = 3.