1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
ответ: -7/25
Объяснение: применим формулу синуса разности двух углов 1)sin(arccos 4/5 - arccos 3/5)= sin(arccos 4/5 )·Сos(arccos3/5) - Cos(arccos 4/5)·Sin (arccos 3/5)⇒
2) Так как Sin(arccos a)= √(1-a²), то (arccos 4/5 )= √(1-(Сos²(arccos 4/5))²= √(1-16/25)= √(9/25)=3/5;
3) Сos(arccos 3/5)= 3/5
4) Cos(arccos 4/5)=4/5
5) Sin (arccos 3/5)= √(1- 9/25)= √16/25= 4/5
6) Тогда, возвращаясь к 1) , имеем:
sin(arccos 4/5 - arccos 3/5)= sin(arccos 4/5 )·Сos(arccos3/5) - Cos(arccos 4/5)·Sin (arccos 3/5) = 3/5 · 3/5 - 4/5 ·4/5 = 9/25-16/25= - 7/25