S = a^2 - формула площади квадрата ("а" в квадрате) ^ - условный знак возведения в степень (а+b)^2 = a^2 + 2ab + b^2 - формула сокращённого умножения
Пусть а (см) - сторона второго квадрата, тогда а+13 (см) - сторона первого квадрата. Площадь первого квадрата на 351 кв.см больше площади второго квадрата. Уравнение: (а+13)^2 - a^2 = 351 a^2 + 2a*13 + 13^2 - a^2 = 351 26a + 169 = 351 26a = 351 - 169 26a = 182 а = 182 : 26 а = 7 (см) - сторона второго квадрата 7 + 13 = 20 (см) - сторона первого квадрата Проверка: 20*20 - 7*7 = 400 - 49 = 351 ответ: 20 см.
Немножко приглядевшись, можно заметить, что система состоит из линейных уравнений с двумя переменными. Далее вспоминаем: уравнение вида ax + by + c = 0 задаёт на координатной плоскости ПРЯМУЮ. Таким образом, у нас известны уравнения двух прямых. Прямые могут либо пересекаться, либо быть параллельными, либо совпадать. Если прямые пересекаются, то система имеет единственное решение. Если прямые параллельны, то система не имеет решений вовсе, так как нет точек пересечения прямых. Если же прямые совпадают, то, как нетрудно сообразить, система имеет бесконечно много решений. Этот случай нас и интересует. Чтобы прямые совпадали, необходимо и достаточно, чтобы соответствующие коэффициенты были пропорциональными. Иначе говоря, если даны две прямые ax + by + c = 0 и a1x + b1y + c1 = 0, то они совпадают тогда, когда a/a1 = b/b1 = c/c1 Запишем это условие для нашей системы. 3/6 = (a-1)/(-5) = 1/2 3/6 = 1/2 выполняется, значит, необходимо, чтобы (a-1)/(-5) = 1/2 Отсюда ищем искомые значения параметра. a-1 = -5/2 a = -1.5
^ - условный знак возведения в степень
(а+b)^2 = a^2 + 2ab + b^2 - формула сокращённого умножения
Пусть а (см) - сторона второго квадрата, тогда а+13 (см) - сторона первого квадрата. Площадь первого квадрата на 351 кв.см больше площади второго квадрата. Уравнение:
(а+13)^2 - a^2 = 351
a^2 + 2a*13 + 13^2 - a^2 = 351
26a + 169 = 351
26a = 351 - 169
26a = 182
а = 182 : 26
а = 7 (см) - сторона второго квадрата
7 + 13 = 20 (см) - сторона первого квадрата
Проверка: 20*20 - 7*7 = 400 - 49 = 351
ответ: 20 см.