Уежайдан бір уақытта ұшып шыққан ұшақтардың біреуі батысқа,ал екіншісі оңтүстікке бет алды.олар 2 сағат ұшқаннан кейін бір-бірінен 2000 км қашықтықта болды. егер бір ұшақтың ғы екіншісінің ғының 75 % - кедей болса, әр ұшақтың ғы қандай?
Перевод: Два самолета в одно время вылетели из аэродрома, один из них полетел на запад, а второй на юг. Через 2 часа полёта они были на расстоянии 2000 км друг от друга. Если скорость одного самолета равна 75% скорости второго самолета, то найдите скорости этих самолетов.
Решение. Обозначим скорость второго самолета через x (км/ч). Тогда скорость первого самолета равна 0,75·x (км/ч).
Расстояние S, которого пролетел самолёт определяется через скорость υ и время t по формуле: S=υ·t.
Пусть самолёты в одно время вылетели из аэродрома O (см. рисунок). Один из них полетел на запад и через 2 часа достиг точку B. Тогда расстояние от точки O до точки B определим на основе данных υ₁=0,75·x (км/ч) и t=2 часа: OB=S₁=υ₁·t=0,75·x·2=1,5·x.
Второй полетел на юг и через 2 часа достиг точку A. Тогда расстояние от точки O до точки A определим на основе данных υ₂=x (км/ч) и t=2 часа, OA=S₂=υ₂·t=x·2=2·x.
Так как направления движений самолётов перпендикулярны, то получаем прямоугольный треугольник AOB, в котором:
∠O=90°, AO=2·x и OB=1,5·x - катеты, а AB - гипотенуза, равная 2000 км.
Для прямоугольного треугольника AOB верна теорема Пифагора:
AB²=AO²+OB².
Тогда
2000²=(2·x)²+(1,5·x)² или 4·x²+2,25·x²=4000000 или
6,25·x²=4000000 или x²=4000000:6,25 или x²=640000.
Отсюда, так как в нашем случае скорость положительная, то скорость второго самолета x=800 км/ч, а скорость первого самолета равна 0,75·800=600 км/ч.
в данном методе нужно сложить левые части обоих уравнений и приравнять к сумме правых частей:
(5х - 4у) + (7х + 4у) = 22 + 2, 5х - 4у + 7х + 4у = 24 - как видим -4у и +4у сокращаются, так как их сумма равна 0 и получаем упрощенное уравнение, 5х + 7х = 24, 12х = 24, х = 2, теперь из любого из уравнений выделяем у: если из 1 ур-ия: у = (5х - 22) : 4 = (5*2 - 22) : 4 = -3, или если из 2 ур-ия: у = (2 - 7х) : 4 = (2 - 7*2) : 4 = -3 (как видим результат у одинаков).
-12-8х<7x+12. 1. переносим числа с "х"-сами в левую сторону, а обычные числа в правую: -8х - 7х < 12+12. ( числа переносятся с противоположными знаками, если не знала) 2. Теперь все складываем: -15х< 24. 3. теперь умножим на -1( для того, что бы знак минуса перед "х" ушел), при умножении на отрицательное число все знаки меняются на противоположные, включая знак неравенства. т.е: 15х > -24. 4. Сократим обе части на 15( поделим тобишь): 15х :15 >24 :15 х>1,6. все. если нужно методом интервалов, то просто начерти прямую, отметь на ней точку 1,6( выколотая) и заштрихуй сторону прямой, идущей после числа, и промежуток получится такой: (1,6 ;+∞)
600 км/ч, 800 км/ч
Объяснение:
Перевод: Два самолета в одно время вылетели из аэродрома, один из них полетел на запад, а второй на юг. Через 2 часа полёта они были на расстоянии 2000 км друг от друга. Если скорость одного самолета равна 75% скорости второго самолета, то найдите скорости этих самолетов.
Решение. Обозначим скорость второго самолета через x (км/ч). Тогда скорость первого самолета равна 0,75·x (км/ч).
Расстояние S, которого пролетел самолёт определяется через скорость υ и время t по формуле: S=υ·t.
Пусть самолёты в одно время вылетели из аэродрома O (см. рисунок). Один из них полетел на запад и через 2 часа достиг точку B. Тогда расстояние от точки O до точки B определим на основе данных υ₁=0,75·x (км/ч) и t=2 часа: OB=S₁=υ₁·t=0,75·x·2=1,5·x.
Второй полетел на юг и через 2 часа достиг точку A. Тогда расстояние от точки O до точки A определим на основе данных υ₂=x (км/ч) и t=2 часа, OA=S₂=υ₂·t=x·2=2·x.
Так как направления движений самолётов перпендикулярны, то получаем прямоугольный треугольник AOB, в котором:
∠O=90°, AO=2·x и OB=1,5·x - катеты, а AB - гипотенуза, равная 2000 км.
Для прямоугольного треугольника AOB верна теорема Пифагора:
AB²=AO²+OB².
Тогда
2000²=(2·x)²+(1,5·x)² или 4·x²+2,25·x²=4000000 или
6,25·x²=4000000 или x²=4000000:6,25 или x²=640000.
Отсюда, так как в нашем случае скорость положительная, то скорость второго самолета x=800 км/ч, а скорость первого самолета равна 0,75·800=600 км/ч.