М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MrCapuchino
MrCapuchino
17.05.2021 11:49 •  Алгебра

Пәнінен көмектесе аласындарма​

👇
Открыть все ответы
Ответ:
12345678300
12345678300
17.05.2021

1. Итак, нам нужно понять какая эта функция! Для этого  Вспомним, что функция f(x )-называется четной( нечетной), если для любого x∈D(f) и выполняется равенство  f(x)=f(-x).

График четной функции симметричен относительно оси .

График нечетной функции симметричен относительно начала координат

 Наш пример : y=x²-cos2x

Функция определенна при x∈(-∞;∞) , то есть f(-x)=(-x)²-cos2(-x)=-x²-cos2x=-(x²-cos2x)-функция является четной, т.к cosx-четная функция

2.Нам нужно сравнить два значения sin(-20°) V sin(-85)°, где V- знак сравнения ( птичкой называют)  

Итак, sin(-20°)=sin(-10°)+sin30°≈0,1736+0,5≈-0,34

sin(-85°)=sin(-5°)-sin(90°)≈0,0872+1≈0,9999=грубо 1

sin(-20°) > sin(-85°). Есть еще более простой смотри поскольку числа не четные, пусть в место sin(-20°) будет sin(-30°)=-0,5 и sin(-85°) бусть будет sin(-90)=-1 и так -0,5>-1

ответ: 1) y=x²-cos2x- функция четная ; 2)sin(-20°) > sin(-85°)

Надеюсь, твой педагог не такая уш придирчивая. Удачи тебе!

4,8(43 оценок)
Ответ:
ppaulineppauline
ppaulineppauline
17.05.2021

1.

\arcsin x=\mathrm{arctg}\,x

ОДЗ: арксинус определен при x\in[-1;\ 1]

Найдем синус левой и правой части:

\sin\arcsin x=\sin\mathrm{arctg}\,x

x=\dfrac{x}{\sqrt{1+x^2} }

x-\dfrac{x}{\sqrt{1+x^2} } =0

x\left(1-\dfrac{1}{\sqrt{1+x^2} } \right)=0

Уравнение распадается на два. Для первого уравнения получим:

x=0

Решаем второе уравнение:

1-\dfrac{1}{\sqrt{1+x^2} } =0

\dfrac{1}{\sqrt{1+x^2} } =1

\sqrt{1+x^2} =1

1+x^2 =1

x^2 =0

x=0

Таким образом, уравнение имеет единственный корень 0.

ответ: 0

2.

\arcsin x=\mathrm{arcctg}\,x

ОДЗ: арксинус определен при x\in[-1;\ 1]

Найдем синус левой и правой части:

\sin\arcsin x=\sin\mathrm{arcctg}\,x

x=\dfrac{1}{\sqrt{1+x^2} }

Так как в правой части стоит положительная величина, то и левая часть должна быть положительной, то есть x0.

Возведем в квадрат обе части:

x^2=\dfrac{1}{1+x^2 }

x^2(1+x^2)=1

x^4+x^2-1=0

Решим биквадратное уравнение:

D=1-4\cdot1\cdot(-1)=5

x^2\neq \dfrac{-1-\sqrt{5} }{2}

x^2=\dfrac{-1+\sqrt{5} }{2}

Находим х:

x=\pm\sqrt{\dfrac{\sqrt{5}-1 }{2}}

Однако, так как было выявлено ограничение x0, то отрицательный корень не попадает в ответ.

x=\sqrt{\dfrac{\sqrt{5}-1 }{2}}

Оценив значение полученного корня, мы понимаем, что он удовлетворяет исходной ОДЗ:

2=\sqrt{4}

1

0.5

\sqrt{0.5}

ответ: \sqrt{\dfrac{\sqrt{5}-1 }{2}}

4,6(37 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ