М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
влад2002ffffffff
влад2002ffffffff
04.12.2022 08:40 •  Алгебра

216. қабырғалары ав = 4 дм, ad = 8 дм болатын abcd тіктөрт-
бұрышының ұзын қабырғасына іргелес екі бұрышының биссек-
трисалары жүргізілген. осы биссектрисалармен тіктөртбұрыш-
тың ауданы қандай бөліктерге бөлінетінін табыңдар.

👇
Ответ:
SherlokHoumsik
SherlokHoumsik
04.12.2022
Для решения данной задачи нам понадобится знание формулы для вычисления площади треугольника. Площадь треугольника можно найти по формуле S = 0.5 * a * h, где a - основание треугольника, h - высота, опущенная на это основание.

Исходя из условия, у нас есть четырехугольник ABCD, в котором известны длины отрезков AB = 4 дм и AD = 8 дм. Нам нужно найти площадь этого треугольника.

Шаг 1: Найдем длину диагонали BD с помощью теоремы Пифагора. Для этого воспользуемся прямоугольным треугольником ABD, в котором известны катеты AB = 4 дм и AD = 8 дм. По теореме Пифагора получаем:
BD^2 = AB^2 + AD^2 = 4^2 + 8^2 = 16 + 64 = 80
BD = √80 = 4√5 дм

Шаг 2: Разделим четырехугольник ABCD на два треугольника, проведя биссектрисы углов A и D. Пусть биссектриса угла A пересекается с противоположной стороной CD в точке E, а биссектриса угла D пересекается с противоположной стороной AB в точке F.

Шаг 3: Найдем длины отрезков CE и DF с помощью пропорции. Применим теорему биссектрисы, которая утверждает, что отрезок CE/DE = AC/AD и отрезок DF/AF = CD/AC. У нас известны значения AC = BD = 4√5 дм и CD = AD = 8 дм, поэтому можем составить следующие пропорции:
CE/8 = 4√5/8
CE = 4√5 дм/2 = 2√5 дм

DF/4√5 = 8/4√5
DF = 8√5 дм/2√5 = 4 дм

Шаг 4: Теперь мы знаем длины сторон треугольников ACD и BDF, а также длину отрезка CF (так как CF = CD - DF = 8 дм - 4 дм = 4 дм). Мы можем найти площади этих треугольников с помощью формулы S = 0.5 * a * h.

Для треугольника ACD:
S_ACD = 0.5 * AC * CF = 0.5 * 4√5 дм * 4 дм = 8√5 дм^2

Для треугольника BDF:
S_BDF = 0.5 * BD * DF = 0.5 * 4√5 дм * 4 дм = 8√5 дм^2

Итак, площадь прямоугольного трапеции ABCD, разделенной биссектрисами углов A и D, является суммой площадей треугольников ACD и BDF:
S_ABCD = S_ACD + S_BDF = 8√5 дм^2 + 8√5 дм^2 = 16√5 дм^2

Ответ: Площадь трапеции ABCD, разделенной биссектрисами углов A и D, равна 16√5 дм^2.
4,5(97 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ