вспомним что такое модуль
|x| = x x>=0
= -x x<0
Пишем на всякий случай ОДЗ x≠3 и смотрим подмодульное выражение
(x²+x-2)/(x-3) = (x+2)(x-1)/(x-3)
D=1+8 = 9
x12=(-1+-3)/2 = -2 1
смотрим метод интервалов
[-2] [1] (3)
Итак при
1. x∈[-2 1) U (3 + ∞)
|(x²+x-2)/(x-3)| = (x²+x-2)/(x-3)
2. x∈(-∞-2) U [1 3)
|(x²+x-2)/(x-3)| = - (x²+x-2)/(x-3)
решаем полученные уравнения
1. x∈[-2 1] U (3 + ∞)
(x²+x-2)/(x-3) = (x²+x-2)/(x-3) решения все числа на интервалах с учетом одз
x∈[-2 1) U (3 + ∞)
2. x∈(-∞-2) U (1 3)
(x²+x-2)/(x-3) = - (x²+x-2)/(x-3)
2(x²+x-2)/(x-3) = 0
x=1 x=-2 решений нет
ответ x∈[-2 1] U (3 + ∞)
2. (b-5)(b+10)+(b+6)(b-8)=b²+10b-5b-50+b²+6b-8b-48=2b²+3b-98
Задача
1) 26 * 3 = 78 деталей сделали вдвоём за 3 часа
2) 5 – 3 = 2 часа работал первый дополнительно
3) 108 – 78 = 30 деталей – сделал первый рабочий за 2 часа
4) 30 : 2 = 15 деталей изготавливал ежечасно первый рабочий.
5) 26 – 15 = 11 деталей изготавливал ежечасно второй рабочий.
ответ: 15 дет. ; 11 дет.
Проверка
15 * 5 + 11 * 3 = 108
75 + 33 = 108
108 = 108 верно