26. Диаметр - отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка.
27. Теорема - это математическое утверждение, истинность которого установлена путём доказательства.
28. Аксиома - исходное положение теории, принимаемое без доказательств.
29. Параллельные прямые - две прямые на плоскости называются параллельными, если они не пересекаются.
30. 1. Если две прямые параллельны третьей прямой, то они являются параллельными. 2.Если две прямые перпендикулярны третьей прямой, то они параллельны. 3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны. 4. Если соответственные углы равны, то прямые параллельны. 5. Если внутренние накрест лежащие углы равны, то прямые параллельны.
31. 1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°. 2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны. 3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны. 4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой. 5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой.
32. Сумма углов треугольника на плоскости равна 180°.
33. Остроугольный, тупоугольный, прямоугольный.
34. Разносторонний, равнобедренный, равносторонний.
35. 1. Против большей стороны лежит больший угол . 2. Против большего угла лежит большая сторона.
36. Самая длинная сторона прямоугольного треугольника, противоположная прямому углу.
37. Длина любой стороны треугольника меньше суммы длин двух других сторон.
38. 1. Гипотенуза больше катета. 2. Катет, лежащий против угла в 30 градусов, равен половине гипотенузы. 3. Медиана, проведённая из вершины прямого угла, равна половине гипотенузы. 4. Сумма острых углов прямоугольного треугольника равна 90 градусам.
39. 1. Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. 2.Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. 3.Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. 4. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны. 5.Если катет и противолежащий ему острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему ему острому углу другого прямоугольного треугольника, то такие треугольники равны.
Объяснение:
1. 7
2. 10
3. 3,8
4. 15,6
5. 13,0
Объяснение:
1. 450см / 70см ≈ 6,43. Если взять 6 дуг, то длина будет всего 420 см, а надо 450. Значит нужно взять минимум 7 дуг.
2. Потребуется (600 / 30) * 2 = 40 плиток на одну дорожку. На две потребуется 80 плиток. Они продаются в упаковках по 8шт., значит нужно взять минимум 10 упаковок.
3. Так как длина полуокружности = 6, то полная окружность равна 12, а она задаётся формулой C = 2πR, где R - тот радиус (высота теплицы). Искомая величина будет диаметром, то есть 2R. Решив уравнение "12 = 2πR", найдём, что R ≈ 1,9. Значит 2R = 3,8
4. Рассмотрев сторону основания, заметим, что её длина равна 3,8 (из пункта 3.), а дорожки занимают 0,6*2м (их две, они шириной по 0,6м). Значит на грядки остаётся 2,6м. Умножим на длину теплицы, получим 15,6м.
5. Требуемая величина будет равна половине площади окружности радиуса = высоте теплицы. Однако, таких стороны в теплице 2, значит искомая площадь = Sокр. = πR². Ранее вычислив R, подставим и посчитаем. S = 11,3354. Посчитав 15% от этого числа (15% = 1,70031) прибавим их к площади и получим искомую величину. = 13,03571. Округлив до десятых получим ответ 13,0
ответ:2-π/2
Объяснение:Решение дано в приложении.