М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
frhjkvg11
frhjkvg11
15.10.2020 15:53 •  Алгебра

Вычислите предел при x → 0 (x стремится к 0): lim(x^2/sin(3x))

👇
Открыть все ответы
Ответ:
masha6610
masha6610
15.10.2020

ответ:x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}

Объяснение:

Уравнения вида, которое вы нам предоставили — очень часто вызывает различные затруднение у учеников и студентов тоже. Но это, на самом деле, не так страшно и не так сложно, как может показаться на первый взгляд. Прежде, чем разобраться с Вашей уравнением cos x = 1/2, нужно подумать, в каком виде можно представить данное уравнение, чтоб понять как его решать.

Вот так будет выглядеть Ваше условие на математическом языке:  

   \[cos x = \frac{1}{2}\]

Да, я понимаю, что это Вам особо не так как вид особо не изменился. Но чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит таким образом:  

   \[cos x = a\]

 

   \[x = \pm arccos \mathbf{a} + 2\pi n, n \in \mathbb{Z}\]

Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:  

   \[cos x = \frac{1}{2}\\]

 

   \[x = \pm arccos \frac{1}{2} + 2\pi n, n \in \mathbb{Z}\]

Значение arccos \frac{1}{2} мы найдём при таблицы. И исходя из этого получаем, что arccos \frac{1}{2} = \frac{\pi}{3}

Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:  

   \[cos x = \frac{1}{2}\]

 

   \[x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}\]

А уже, учитывая всё выше написанное, приведём решение нашего уравнения к нормальному виду и получим такое:  

   \[x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}\]

ответ: x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}

4,8(18 оценок)
Ответ:
sonyafeldman
sonyafeldman
15.10.2020

вспомним что такое модуль

|x| = x  x>=0

    = -x  x<0

Пишем на всякий случай ОДЗ x≠3 и смотрим подмодульное выражение

(x²+x-2)/(x-3) = (x+2)(x-1)/(x-3)

D=1+8 = 9

x12=(-1+-3)/2 = -2 1

смотрим метод интервалов

[-2] [1] (3)

Итак при

1. x∈[-2 1) U (3 + ∞)

|(x²+x-2)/(x-3)| = (x²+x-2)/(x-3)

2. x∈(-∞-2) U [1  3)

|(x²+x-2)/(x-3)| = - (x²+x-2)/(x-3)

решаем полученные уравнения

1. x∈[-2 1] U (3 + ∞)

(x²+x-2)/(x-3) = (x²+x-2)/(x-3) решения все числа на интервалах с учетом одз

x∈[-2 1) U (3 + ∞)

2. x∈(-∞-2) U (1  3)

(x²+x-2)/(x-3) = - (x²+x-2)/(x-3)

2(x²+x-2)/(x-3) = 0

x=1  x=-2 решений нет

ответ x∈[-2 1] U (3 + ∞)

4,7(84 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ