Объяснение:
Т.к. в условии сказано, что никакие две девочки не подарили валентинки одинаковому количеству мальчиков, то все девочки подарили разное количество валентинок. Причём одна и та же девочка не может подарить валентинку одному и тому же мальчику более одного раза, тогда:
Первая девочка подарила 1 валентинку, вторая девочка подарила 2 валентинки, третья 3 валентинки...
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 - валентинок было подарено, соответственно, мальчиков, которые получили валентинки было 120, а девочек, которые их дарили 15
Если бы мы взяли
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136 - это уже получилось бы, что 136 мальчиков получили валентинки и 16 девочек их дарили, а всего детей в школе 143
136 + 16 > 143 неверно
x^3 - y^3=3x^2y+5 (1)
xy^2=1 умножаем на 3 обе части 3xy^2 = 3 (2)
вкладываем (1) и (2)
x^3 - y^3 +3xy^2 = 3x^2y+5 +3
x^3 - y^3 +3xy^2 - 3x^2y = 8 применяем формулу КУБ разности
(x-y)^3 = 8
x-y = ³√8 =³√2^3 = 2
x = y + 2
подставляем Х
(y+2)y^2=1
y^3 +2y^2 -1 =0
y^3 + y^2 + y^2 -1 =0
y^2(y + 1) + (y -1)(y+1) =0
(y+1) (y^2+y-1) =0
y1 = 0 ; x1 = y+2 = 0 +2 = 2 ( 2; 0 )
y^2+y-1 =0 - квадратное уравнение
D = 1^2 - 4*1*-1 = 5
√D =√5
y = 1/2 (-1 +/- √5)
y2 =1/2 (-1 - √5) ; x2 = y2 + 2 = 1/2 (-1 - √5) +2 = 1/2 (3 - √5) ;
y3 =1/2 (-1 + √5) ; x3 = y3 + 2 = 1/2 (-1 + √5) +2 = 1/2 (3 + √5) ;
ОТВЕТ
( 2; 0 )
( 1/2 (3 - √5); 1/2 (-1 - √5) )
( 1/2 (3 + √5); 1/2 (-1 + √5) )