Здесь мы используем формулу: расстояние (S), скорость (V) и время (t). Чтобы найти расстояние, нужно время умножить на скорость, или наоборот. Чистую скорость лодки возьмём за X. Получаем: S=3,5*(X+2), так как +2 км/ч даёт течение. Расстояния одинаковые, а на втором пути расстояние можно узнать так: S=5,25*(X-2), поскольку 15 минут - одна четвёртая часть часа. Составляем уравнение: 3,5(X+2)=5,25(X-2) 3,5Х+7=5,25Х-10,5 3,5Х-5,25Х=-10,5-7 -1,75Х=-17,5 Х=-17,5:(-1,75) Х=10 10 км/ч - чистая скорость лодки. S общее = S по течению + S против течения. S общее = 3,5(10+2) + 5,25(10-2) = 3,5*12+5,25*8=42+42=84 (км) - S общее.
ответ: ( (7+√17) / 2; (7-√17)/2 ); ( (7-√17) / 2; (7+√17)/2 ).
Объяснение:
ху-х=4,
2х+у=7;
Из второго уравнения выразим у через х.
у=7-2х;
Подставим значение у в первое уравнение.
х(7-2х)=4; 7х-2х²=4; -2х²+7х-4=0; 2х²-7х+4=0;
D=49-4*2*4=49-32=17;
х₁₂=(7±√17) / 2;
х₁=(7+√17) / 2; х₂=(7-√17) / 2.
Подставим значения х в выражение у:
у₁=7 - (7+√17) / 2= 14/2 - (7+√17) / 2=(14-7-√17) / 2=(7-√17)/2;
у₂=7-(7-√17) / 2= 14/2 - (7-√17) / 2=(14-7+√17) / 2=(7+√17)/2.
ответ:( (7+√17) / 2; (7-√17)/2 ); ( (7-√17) / 2; (7+√17)/2 ).