М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
катя4876
катя4876
17.11.2022 21:20 •  Алгебра

Сумма квадратов двух целых чисел тоже является полным квадратив.доведить что хотя бы одно из этих чисел делятся на 3​

👇
Ответ:
jookyun
jookyun
17.11.2022

Объяснение:

N^2+M^2=L^2 (*)

Пусть

N=3K+1

M=3J+1

L^2=9*(J^2+K^2)+6*(J+K)+2

Допустим  J и  K оба четные или оба нечетные. Тогда противоречие очевидно -слева число должно делиться на 4 , а справа не делится.

То же рассуждение проходит и для M=3J-1. Значит одно из чисел обязательно четное, другое нечетное. Но то же можно, стало быть , сказать и про М и Н. Но умножив оба таких числа на 2 мы не наруши свойство (*). Значит мы пришли к противоречию.

4,5(44 оценок)
Открыть все ответы
Ответ:
nasa21p08m1i
nasa21p08m1i
17.11.2022
Число при делении на 5 дает в остатке 3 только если оно заканчивается на 3 или на 8. Докажем что ни одно целое число в квадрате не заканчивается ни на 3, ни на 8.

если число закачивается на 0, то в квадрате оно  заканчивается на 0
если число закачивается на 1, то в квадрате оно  заканчивается на 1
если число закачивается на 2, то в квадрате оно  заканчивается на 4
если число закачивается на 3, то в квадрате оно  заканчивается на 9
если число закачивается на 4, то в квадрате оно  заканчивается на 6
если число закачивается на 5, то в квадрате оно  заканчивается на 5
если число закачивается на 6, то в квадрате оно  заканчивается на 6
если число закачивается на 7, то в квадрате оно  заканчивается на 9
если число закачивается на 8, то в квадрате оно  заканчивается на 4
если число закачивается на 9, то в квадрате оно  заканчивается на 1

все, вариантов не осталось. Доказано.
4,7(40 оценок)
Ответ:
Аня24204
Аня24204
17.11.2022
1)  Оценим сумму , для этого примем что есть равные числа. Так как есть место для чисел 3 4 и 6 это  3 числа. 
 \frac{16*1+15x}{31} 
 x \in (-\infty;\frac{46}{15})\\
\frac{46}{15} то есть  да может , так как \frac{46}{15} ее целая часть равна 3 , а она натуральное число , и найдется набор таких чисел что среднее арифметическое будет меньше 2 , так как в условий не сказано что , сам набор может состоят так только из разных натуральных чисел.  
2)\frac{15+16x}{31} ,  целая часть этого числа равна 2 , то есть не может , так как в сумме 2=1+1 , и по количеству в этом наборе минимальное есть 16 единиц .  
3) 3+4+6=13\\
 так как мы ранее доказали что , есть не менее 16 единиц , и того 13+16=3932 что удовлетворяет условию .  
4,5(16 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ