М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ana0stacy
ana0stacy
25.03.2022 23:59 •  Алгебра

Решить как можно быстрее! заранее ✊

найдите квадратное уравнение.
1) 2x^2 - 5+ х = 0
2) х^2 + 5 = 0
3) 4х – х^2 – 5 = 0
4) 8x^2– х + 2 = 0
3. определите коэффициенты квадратного уравнения -5x+x° + 2 = 0.
1) а = 1; b = -5; c = 2 3) а = 2; b = 1; c = -5
2) а = 1; b = 2; c = -5
4 ) а = 2; b = -5; c=1
4. решите уравнения.
а) х^2- 2x = 0
б) за^2- 12 = 0
в) х^2 + 36 = 0

👇
Открыть все ответы
Ответ:
lolsotobas
lolsotobas
25.03.2022
A)  y = 2*(x^3) - 3*(x^2)   (-1;3)
Находим первую производную функции:
y' = 6*(x^2) - 6x
или
y' = 6x(x-1)
Приравниваем ее к нулю:
6*(x^2) - 6x = 0
x(x - 1) = 0
x1 = 0
x2 = 1
Вычисляем значения функции на концах отрезка
f(0) = 0
f(1) = -1
f(-1) = -5
f(3) = 27
ответ:  fmin = -5, fmax = 27
б)  x^3 + 3x    (-1;2)
Находим первую производную функции:
y' = 3*(x^2) + 3
Приравниваем ее к нулю:
3*(x^2) + 3 = 0
Глобальных экстремумов нет
Находим стационарные точки:
Вычисляем значения функции на концах отрезка
f(-1) = - 4
f(2) = 14
ответ:
Имеются только локальные экстремумы (на заданном интервале)
fmin = -4, fmax = 14
в) y =  2*(x^3) - 6*(x^2) + 9   (-2;2)
Находим первую производную функции:
y' = 6*(x^2) - 12x
или
y' = 6x(x-2)
Приравниваем ее к нулю:
6x(x-2) = 0
x1 = 0
x2 = 2
Вычисляем значения функции на концах отрезка
f(0) = 9
f(2) = 1
f(-2) = -31
f(2) = 1
ответ:  fmin = -31, fmax = 9
г)  y = (x^3) - 3x    (-2;3)
Находим первую производную функции:
y' = 3*(x^2) - 3
Приравниваем ее к нулю:
3*(x^2) - 3 = 0
x1 = -1
x2 = 1
Вычисляем значения функции на концах отрезка
f(-1) = 2
f(1) = -2
f(-2) = -2
f(3) = 18
ответ:fmin = -2, fmax = 18
4,6(51 оценок)
Ответ:
masasedal
masasedal
25.03.2022
A)  y = 2*(x^3) - 3*(x^2)   (-1;3)
Находим первую производную функции:
y' = 6*(x^2) - 6x
или
y' = 6x(x-1)
Приравниваем ее к нулю:
6*(x^2) - 6x = 0
x(x - 1) = 0
x1 = 0
x2 = 1
Вычисляем значения функции на концах отрезка
f(0) = 0
f(1) = -1
f(-1) = -5
f(3) = 27
ответ:  fmin = -5, fmax = 27
б)  x^3 + 3x    (-1;2)
Находим первую производную функции:
y' = 3*(x^2) + 3
Приравниваем ее к нулю:
3*(x^2) + 3 = 0
Глобальных экстремумов нет
Находим стационарные точки:
Вычисляем значения функции на концах отрезка
f(-1) = - 4
f(2) = 14
ответ:
Имеются только локальные экстремумы (на заданном интервале)
fmin = -4, fmax = 14
в) y =  2*(x^3) - 6*(x^2) + 9   (-2;2)
Находим первую производную функции:
y' = 6*(x^2) - 12x
или
y' = 6x(x-2)
Приравниваем ее к нулю:
6x(x-2) = 0
x1 = 0
x2 = 2
Вычисляем значения функции на концах отрезка
f(0) = 9
f(2) = 1
f(-2) = -31
f(2) = 1
ответ:  fmin = -31, fmax = 9
г)  y = (x^3) - 3x    (-2;3)
Находим первую производную функции:
y' = 3*(x^2) - 3
Приравниваем ее к нулю:
3*(x^2) - 3 = 0
x1 = -1
x2 = 1
Вычисляем значения функции на концах отрезка
f(-1) = 2
f(1) = -2
f(-2) = -2
f(3) = 18
ответ:fmin = -2, fmax = 18
4,8(8 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ