Без графиков можно так. Если (x₀,y₀) - какое-нибудь решение и |x₀|≠|y₀|, то (-x₀,-y₀), (y₀,x₀), (-y₀,-x₀) - еще 3 различных решения. Значит, чтобы было 2 решения, должно быть x₀=y₀, либо x₀=-y₀. 1) Если x₀=y₀, то |x₀|=1/2=|y₀|, откуда а=1/2. Из неравенства |x+y|≤|x|+|y|≤√(2(x²+y²)) верного для всех х,у при а=1/2 получаем 2-|x|-|у|≤|x|+|y|≤1, т.е. |x|+|y|=1. Подставляя это во второе уравнение системы, получим 4 точки, из которых подходят только две: (1/2;1/2) и (-1/2;-1/2). Т.е. при а=1/2 система действительно имеет только 2 решения. 2) Если x₀=-y₀, то |x₀|=1=|y₀|, откуда а=2. Из неравенства 2|x|=|(x+y)+х+(-у)|≤|x+у|+|x|+|y|=2, следует что |x|≤1 и аналогично |y|≤1, а значит x²+y²=2 может быть только если |x|=1 и |y|=1. Из 4 точек подходят только две (-1;1) и (1;-1), значит при а=2 система тоже имеет только 2 решения. Итак, ответ: а∈{1/2; 2}.
Австралийские аборигены сделали это в Австралию где-то между 6000 и 50000 лет назад. Существует никаких письменных источников, поэтому можно только догадываться о том, когда они появились, и кто был первым из них.
Азиатский человек посетили Северное побережье регулярно на протяжении сотен лет до европейцев ступил на континенте, чтобы собрать морских слизняков (трепанг), ценным деликатесом в Азии. Опять же, нет записи самого первого мужчину или женщину, чтобы ступить на континенте.
Считается, что португальцы были первыми, чтобы зрение австралийского континента, но нет никаких записей в самой Португалии в обоснование иска. Источник для этого утверждения являются карты Дьепа, что дата между 1542 и 1587, и которые были составлены группой французских картографов, используя португальского источника. Эти карты название большая масса земли считается Австралийский континент как java-ла-Гранде. Есть предположение, что карты, не в масштабе, на самом деле представляют собой преувеличены Западной Яве, возможно, даже Вьетнам.
Виллем Янс/Янсзон был голландец, который искал новые торговые пути и торговых партнеров. Командуя Duyfken, он стал первым записан европейских ступить на берега Австралии, на западном берегу полуострова Кейп-Йорк, 26 февраля 1606. Тем не менее, он считал Мыс, чтобы быть частью Новой Гвинеи, откуда он пересек Арафурское море, так он и не рекорд Австралии как отдельный, новый континент.
В 1616 году голландский морской капитан Дирк Хартог слишком далеко уплыл пока опробовать недавно обнаружен Henderik Браувера маршрут от мыса Доброй Надежды до Батавии, через Ревущие сороковые. Достигнув западного побережья Австралии, он приземлился на надпись мыса в заливе Шарк на 25 октября 1616. Его первое известное упоминание о Европейской посещение берегов Западной Австралии.
Первым англичанином, чтобы посетить Австралию, был Уильям Дампир в 1688.
Джеймс Кук (еще не капитан) достиг восточного побережья Австралии и утверждал, что это во имя Великобритании в 1770 году, назвав его Новый Южный Уэльс. Он считал, что на восточном побережье с апреля по август этого года. По этой причине, готовить часто ошибочно приписывают открытие Австралии.
1) Если x₀=y₀, то |x₀|=1/2=|y₀|, откуда а=1/2. Из неравенства
|x+y|≤|x|+|y|≤√(2(x²+y²)) верного для всех х,у при а=1/2 получаем
2-|x|-|у|≤|x|+|y|≤1, т.е. |x|+|y|=1. Подставляя это во второе уравнение системы, получим 4 точки, из которых подходят только две: (1/2;1/2) и (-1/2;-1/2). Т.е. при а=1/2 система действительно имеет только 2 решения.
2) Если x₀=-y₀, то |x₀|=1=|y₀|, откуда а=2. Из неравенства
2|x|=|(x+y)+х+(-у)|≤|x+у|+|x|+|y|=2, следует что |x|≤1 и аналогично |y|≤1, а значит x²+y²=2 может быть только если |x|=1 и |y|=1. Из 4 точек подходят только две (-1;1) и (1;-1), значит при а=2 система тоже имеет только 2 решения. Итак, ответ: а∈{1/2; 2}.