Координаты точки пересечения графиков данных функций (1; 1)
Решение системы уравнений х=1
у=1
Объяснение:
3х+y=4
7х—2у=5 решить графически систему уравнений.
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
3х+y=4 7х—2у=5
у=4-3х -2у=5-7х
2у=7х-5
у=(7х-5)/2
Таблицы:
х -1 0 1 х -1 0 1
у 7 4 1 у -6 -2,5 1
Согласно графика, координаты точки пересечения графиков данных функций (1; 1)
Значения таблиц это подтверждают.
Решение системы уравнений х=1
у=1
1
Объяснение:
Тк делители должны быть простыми числами(иначе не соблюдение условия про отсутствие однозначных делителей) Возьмем на пример 11 - рассматривается делитель простой и не однозначный,но даже его квадрат трехзначный-а у нас не может быть трехзначного делителя.
Почему я рассматриваю квадрат?Потому что мы доказываем ,что делитель только один.Поэтому я взяла в пример 11 тк это самое маленько число подходящие под наш критерий делителей.Дальше по логике могли бы быть только простые числа большие 11.Например,число дел на 11 и на 13 =>делится на 143.Значит,двучзначный делитель может быть только один.
1).(a+2)²= а²+4а+4
2).(b-4)²=b²-8b+16
3).(x-5)²=x²-10x+25
4).(a+9)²=a²+18a+81
5).(2x+1)²=4x²+4x+1
6).(8y-3)²=64y²-48y+9