8) Высота, проведённая из вершины прямого угла к гипотенузе является средним пропорциональным между отрезками, на которые делится гипотенуза основанием высоты, то есть h²=a*b, где а=18, b=32
h²=576, h=24
Гипотенуза с=a+b=18+32=50
Площадь S=1/2*h*c=1/2*24*50=600
6) a₁=4, d=3 S(n)=246
S(n)=[ (2a₁+d(n-1)) /2 ]*n
2*4+3n-3
S(n)= * n =246
2
3n²+5n-492=0 , D=25+4*3*492=5929 , √D=77 ,
n₁=(-5-77)/6=-82/6=-41/3
n₂=(-5+77)/6=72/6=12
Надо взять первых 12 членов прогрессии, чтобы получить S=246
5) Чтобы построить график, надо определить несколько характерных точек для кривой и провести через них кривую.
Заданная ф-ция - парабола.Так как перед х² коэффициент равен (-1), то ветви параболы направлены вниз. Поэтому наибольшее значение ф-ция принимает в вершине.
Точки пересечения с осью ОХ: 3+2х-х²=0 ⇒ х²-2х-3=0
По теореме Виета х₁=-1 , х₂=3 ⇒ точки А(-1,0) и В(3,0) пересечения с ОХ.
Вершина параболы: х(верш)=-b/2a=-2/-2=1 , y(верш)=3+2*1-1²=3+2-1=4
Точка С(1,4) - вершина параболы. ⇒ Наибольшее значение ф-ция у=3+2х-х² - это число 4,значит множество значений ф-ции Е(у)=(-∞,4].
Промежуток убывания - (1,+∞).
5x^2+3x-2 / 10x^2+x-2
Решим каждое выражение по формуле дискриминанта:
5x^2+3x-2=0
D= 9+40=49
корень из D=7
x1= -3-7/10= -1
x2= -3+7/10= 0,4
Используя это, выражение можно представить так: (впереди всегда ставится первый коэфицент, в данном случае 5, а остальное раскладываем на скобки ... затем пять умножаем на вторую скобку, чтобы избавиться от дроби 0,4)
5x^2+3x-2= 5(x+1)(x-0,4)= (x+1)(5x-2)
Тоже самое делаем со вторым выражением:
10x^2+x-2=0
D=1+80=81
корень из D=9
x1= -1-9/20= -0,5
x2= -1+9/20= 0,4
Тут все так же. Впереди 10, но мы раскладываем десятку на 2 и 5, и умножаем на "удобные" скобки, чтобы избавиться от дробей.
10x^2+x-2= 10(x+0,5)(х-0,4)= (2х+1)(5х-2)
Заменяем данные выражения - получившимися:
(х+1)(5х-2) / (2х+1)(5х-2)= х+1 / 2х+1
При делении скобка (5х-2) сократится.
Окончательный ответ дробь х+1 / 2х+1
Это все :) Объяснила, как смогла, удачи))
Если что, во вложениях формулы для решения дискриминанта!