Дана функция: y=x^2-4x+3 a) запишите координаты вершины параболы; b) запишите ось симметрии параболы; c) найдите точки пересечения графика с осями координат; d) постройте график функции; e)определите, в каких четвертях находится график функции
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
По условию, выражение -5с-с² принимает отрицательные значения, т.е. значения меньше нуля. Таким образом, задача сводится к решению неравенства -5с-с²<0 Решение: -5c-c²<0 (умножаем обе части неравенства на (-1), при этом знак меняется) c²+5c>0 (разложим на множители левую часть неравенства) c(c+5)>0 (далее решаем методом интервалов) + - + (-5)(0)
Т.к. знак неравенства > (больше нуля), то выбираем области, где стоит знак плюс, получаем ответ: с∈(-∞;-5)U(0;+∞)
По действиям. 1) 20 мин. = ²⁰/₆₀ ч. = ¹/₃ ч. 30 * ¹/₃ = ³⁰/₃ = 10 (км) успел проехать II велосипедист за время остановки I велосипедиста , т.е. 20 минут. 2) 20 + 30 = 50 (км/ч) скорость сближения велосипедистов 3) (210 - 10) : 50 = 200 : 50 = 4(ч.) время, через которое велосипедисты встретились 4) 4 * 30 + 10 = 120 + 10 = 130 (км) расстояние от города, из которого выехал II велосипедист, до места встречи.
Уравнение. Пусть расстояние, которое проехал II велосипедист, до места встречи равно х км , а расстояние которое проехал I велосипедист (210-х) км. Время в пути до момента встречи II велосипедиста (х/30) часов , а I велосипедиста (210 - х)/20 часов. Зная, что разница во времени 20 минут = ¹/₃ часа , составим уравнение: х/30 - (210 - х)/20 = ¹/₃ | * 60 2x - 3(210 - x) = 20 2x - 3*210 - 3 * (-x) = 20 2x - 630 + 3x = 20 5x - 630 = 20 5x = 20 +630 5x= 650 x= 650: 5 x = 130 (км)
ответ: 130 км расстояние от города , из которого выехал второй велосипедист, до места встречи.
y=x²-4x+3
y=ax²+bx+c
a=1, b=-4, c=3
1) Координаты вершины параболы:
х(в)= -b/2a = -(-4)/(2*1)=4/2=2
у(в) = 2²-4*2+3=4-8+3=-1
V(2; -1) - вершина параболы
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.