В среднем семья Ивановых выпивает в день 8 пакетик(-а, -ов) чая. Какое наименьшее количество упаковок чая необходимо семье Ивановых в год (365 дней), если в упаковке — 100 пакетиков чая?
2) находим значение этих производных в точке М: du/dx(2;-2)=2/(4+4)=1/4=0,25; du/dy(2;-2)=2/(4+4)=1/4=0,25.
3) Уравнение x²+y²=4x, или x²-4x+y²=(x-2)²+y²-4=0, или (x-2)²+y²=4, очевидно, есть уравнение окружности с центром в точке М1(2;0) и радиусом r=√4=2.
4) Обозначим F(x,y)=x²-4x+y². Найдём dF/dx и dF/dy. dF/dx=2x-4, dF/dy=2y.
5) Найдём значения этих производных в точке М. dF/dx(2;-2)=0, dF/dy(2;-2)=-4. Эти значения являются координатами нормального вектора, проходящего через точку М, то есть вектора, перпендикулярного вектору, направленному по касательной к окружности в данной точке М. Из бесчисленного множества последних выберем нормированный. Пусть этот вектор имеет координаты Ax и Ay. Тогда, так как векторы перпендикулярны, их скалярное произведение равно 0. Но последнее можно записать в виде 0*Ax+(-4)*Ay=0, откуда Ay=0. С другой стороны, скалярное произведение Ax*Ax+Ay*Ay=(Ax)²+(Ay)²=1, откуда Ax=+1 и Ax=-1.
6) Производная по направлению в точке М вычисляется по формуле du/dl=du/dx(2;-2)*cos α +du/dy(2;-2)*cos β, где cos α=Ax/модуль А, cos β=Ay/модуль А. Но модуль А=1, и тогда cos α=1 либо cos α=-1, cos β=0. А тогда du/dl=0,25*1=0,25, либо du/dl=-0,25. ответ: 0,25 либо -0,25.
-5*7=q; -5+7=-p q=-35; p=-2
x^2 -2x-35=0 искомое уравнение
2)x2-x1=6
x^2-4x+q=0
{x1+x2=4;
{x2-x1=6 2*x2=10; x2=5; x1=4-5=-1
q=-1*5=-5
3)9x^4-37x^2+4=0
t=x^2; 9t^2-37t+4=0
D=37^2-4*9*4=37^2 -(4*3)2=(37-12)(37+12)=25*49=(5*7)^2
t1=37-35)/18=1/9; t2=(37+35)/18=4
x^2=1/9 ili x^2=4
x=1/3 ili x=-1/3 x=-2 ili x=2
ответ -2; -1/3; 1/3; 2.
4)(x^2-8)^2 +3(x^2-8)=4
t=x^2-8; t^2+3t-4=0
t1=1; t2=-4 (по теореме Виета!)
x^2-8=1 ili x^2-8=-4
x^2=9 x^2=4
x=+-3 x=+-2
ответ. -3; -2; 2; 3
А 9x^4-13x^2+4=0
t=x^2; 9t^2-13t+4=0
D=169-144=25=5^2; t1=(13-5)/18=8/18=4/9 ;t2=1
x^2=4/9 ili x^2=1
x=+-2/3 x=+-1