1) Переводим все в одну единицу измерения, удобнее перевести из метров в сантиметры: 6 м = 600 см 2,5 м = 250 см 10 м = 100 см 2) Вычисляем площадь стены по формуле S = a×b, где a - это длина, а b - это высота. S = 600×250= 150000 см^2 3) Вычисляем площадь одного рулона по той же формуле: S = 80×100= 8000 см^2 (в одном рулоне) 4) Делим площадь стены на площадь одного рулона: 150000/8000= 18,75 см^2( понадобится рулонов) Так как число дробное, то округляем в большую сторону, чтобы рулонов хватило = 19. ответ: 19 рулонов.
Обозначим a1 + a2 + ... + ak = Sk, S(k+1) = Sk +- 1, S2n = 0. Можно считать, что a1 = 1. Нам необходимо посчитать количество последовательностей, для которых S1 = 1, все Sk >= 0 и S2n = 0. Такие последовательности будем называть правильными, а не являющиеся правильными - неправильными.
Общее число последовательностей, для которых S1 = 1 и S2n = 0, равно биномиальному коэффициенту из (2n - 1) по (n - 1) (понятно, что среди a2, a3, ..., a2n есть ровно (n - 1) число +1, так что нужно найти число выбрать (n - 1) место из (2n - 1)).
Посчитаем количество неправильных последовательностей. Я утверждаю, что общее число неправильных последовательностей равно общему числу последовательностей, у которых S1 = -3 и S2n = 0. Доказательство. Пусть a1, a2, ..., a2n - неправильная последовательность. Это означает, что для какого-то номера k выполнилось Sk = -1. Пусть k - первый номер, для которого это верно. Заменим все члены a2, a3, ..., ak на -a2, -a3, ..., -ak и подберем новое значение a1 так, чтобы по-прежнему было Sk = -1. Тогда a1 = -3. Поскольку каждой неправильной последовательности соответствует ровно одна новая последовательность, и из каждой новой последовательности можно получить только одну неправильную последовательность, то их количества равны.
Количество неправильных последовательностей с учетом утверждения легко посчитать. Если a1 = -3 и S2n = 0, то среди a2, a3, ..., a2n должно быть (n - 2) чисел -1 и (n + 1) число +1. Отсюда число неправильных последовательностей равно биномиальному коэффициенту из (2n - 1) по (n - 2).
Остается вспомнить, что число правильных последовательностей = общее число минус число неправильных последовательностей.
6 м = 600 см
2,5 м = 250 см
10 м = 100 см
2) Вычисляем площадь стены по формуле S = a×b, где a - это длина, а b - это высота. S = 600×250= 150000 см^2
3) Вычисляем площадь одного рулона по той же формуле: S = 80×100= 8000 см^2 (в одном рулоне)
4) Делим площадь стены на площадь одного рулона: 150000/8000= 18,75 см^2( понадобится рулонов)
Так как число дробное, то округляем в большую сторону, чтобы рулонов хватило = 19.
ответ: 19 рулонов.