М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
konoplynkoyanoka
konoplynkoyanoka
18.10.2021 04:42 •  Алгебра

Во на
Решить неравенство ниже

👇
Ответ:
arifmametov1
arifmametov1
18.10.2021

Объяснение: там где буквами написано: область допустимых значений


Во на Решить неравенство ниже
4,6(42 оценок)
Ответ:
Apelsin2403
Apelsin2403
18.10.2021

x \in (-2; \ 2^{-8\sqrt[3]{4}}-2]

Объяснение:

\log_\frac{1}{4}(x+2)\geq ( \sqrt[3]{16})^2 \\ \\ x+2\leq (\frac{1}{4})^{ ( \sqrt[3]{16})^2} \\ \\ x\leq (\frac{1}{4})^{ ( \sqrt[3]{16})^2} -2=(2^{-2})^{ ( 2^{\frac{4}{3} )^2}}-2=2^{-2* 2^{\frac{8}{3}}}-2=2^{-2^{\frac{11}{3}} }-2=\\ \\ 2^{-2^{3+\frac{2}{3}} }-2=2^{-8\sqrt[3]{4}} -2=\frac{1}{2^{8\sqrt[3]{4}}} -2 \\ \\ x\leq \frac{1}{2^{8\sqrt[3]{4}}} -2

Оценим данное выражение:

2^{8\sqrt[3]{4}}1 \\ \\ 0

ОДЗ:

\left\{\begin{matrix}x+20\\ \log_\frac{1}{4} (x+2)0 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}x-2\\ x+2-2\\ x

4,4(45 оценок)
Открыть все ответы
Ответ:
ник11073
ник11073
18.10.2021
Пусть на отрезке AB точка C - место встречи автомобиля с первым мотоциклом, точка D - место встречи со вторым мотоциклом. Причем точка D находится между точками C и B. Если AB = s , скорость мотоцикла Vм , скорость автомобиля  Vа , AC =  x , то CD =  2s/9 , CB =  s−x и DB =  7s/9−x . Так как по условию автомобиль и первый мотоцикл выехали одновременно, то  x/Va=(s−x)/Vм . То есть затраченное время каждым одинаково на путь до встречи. Аналогично для автомобиля и второго мотоцикла с момента первой встречи автомобиля до второй встречи:  2/9s/Va=7/(9s−x)/Vм . Из первого уравнения выразим  x=Va*s/Va+Vм и подставим во второе. После упрощения получаем  2/Vа⋅Vм=7−(Vа/(Vа+Vм)) , то есть  2V²a−5VaVм+2V²м=0 . Разделим левую и правую части уравнения на  V²м и получим квадратное уравнение относительно  Vа/Vм :  2(Vа/Vм)²−5Vа/Vм+2=0 . Находим, что  Va/Vм=2 или  Vа/Vм=1/2 . Так как по условию скорость мотоцикла меньше, то  Vа=2Vм . Далее рассмотрим случай, когда скорость автомобиля на 20 меньше. Точки C и D будут иметь тот же смысл, что и в первом случае. Пусть AC = y, CD = 72, DB = s- y -72, CB = s - y. Тогда можно составить уравнения:  y/(Va−20)=3 ,  y/(Va−20)=(s−y)/Vм и  72/(Va−20)=(s−y−72)/Vм .  Из первого и второго уравнений выражаем y и приравниваем:  6(Vм−10)=(2s(Vм−10))/3Vм−20 , откуда  Vм=s+609 . Далее в третье уравнение подставляем найденные выражения так, чтобы осталась только неизвестная s:   36/((s+60)/9)−10)=s−6(((s+60)/9)−10)−72/((s+60)/9) . Получаем  36/(s−30)=(9s−6s+180−648)/9(s+60) , откуда  s²−294s−1800=0 и  s=300 .   
4,5(40 оценок)
Ответ:
averianova1986
averianova1986
18.10.2021
Пусть на отрезке AB точка C - место встречи автомобиля с первым мотоциклом, точка D - место встречи со вторым мотоциклом. Причем точка D находится между точками C и B. Если AB = s , скорость мотоцикла Vм , скорость автомобиля  Vа , AC =  x , то CD =  2s/9 , CB =  s−x и DB =  7s/9−x . Так как по условию автомобиль и первый мотоцикл выехали одновременно, то  x/Va=(s−x)/Vм . То есть затраченное время каждым одинаково на путь до встречи. Аналогично для автомобиля и второго мотоцикла с момента первой встречи автомобиля до второй встречи:  2/9s/Va=7/(9s−x)/Vм . Из первого уравнения выразим  x=Va*s/Va+Vм и подставим во второе. После упрощения получаем  2/Vа⋅Vм=7−(Vа/(Vа+Vм)) , то есть  2V²a−5VaVм+2V²м=0 . Разделим левую и правую части уравнения на  V²м и получим квадратное уравнение относительно  Vа/Vм :  2(Vа/Vм)²−5Vа/Vм+2=0 . Находим, что  Va/Vм=2 или  Vа/Vм=1/2 . Так как по условию скорость мотоцикла меньше, то  Vа=2Vм . Далее рассмотрим случай, когда скорость автомобиля на 20 меньше. Точки C и D будут иметь тот же смысл, что и в первом случае. Пусть AC = y, CD = 72, DB = s- y -72, CB = s - y. Тогда можно составить уравнения:  y/(Va−20)=3 ,  y/(Va−20)=(s−y)/Vм и  72/(Va−20)=(s−y−72)/Vм .  Из первого и второго уравнений выражаем y и приравниваем:  6(Vм−10)=(2s(Vм−10))/3Vм−20 , откуда  Vм=s+609 . Далее в третье уравнение подставляем найденные выражения так, чтобы осталась только неизвестная s:   36/((s+60)/9)−10)=s−6(((s+60)/9)−10)−72/((s+60)/9) . Получаем  36/(s−30)=(9s−6s+180−648)/9(s+60) , откуда  s²−294s−1800=0 и  s=300 .   
4,8(25 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ