Cделаем замену x2 + 4x = t, тогда уравнение будет выглядеть следующим образом:
(t – 5)(t – 21) = 297.
Раскроем скобки, приведем подобные слагаемые:
t2 – 21t – 5t + 105 = 297;
t2 – 26t – 192 = 0.
По теореме Виета определяем, что корнями полученного уравнения будут числа -6 и 32.
После обратной замены будем иметь:
x2 + 4x = -6 или x2 + 4x = 32
x2 + 4x + 6 = 0 x2 + 4x – 32 = 0
D = 16 – 24 < 0 D = 16 + 128 > 0 ((x – 1)(x + 5))((x – 3)(x + 7)) = 297;
(x2 + 5x – x – 5)(x2 + 7x – 3x – 21) = 297;
(x2 + 4x – 5)(x2 + 4x – 21) = 29Нет корней x1 = -8; x2 = 4
Найдем произведение корней: -8 · 4 = -32.
ответ: -32.
у = -24
у = 0
х первое = -1
х второе = 2/3
Так как график - парабола, при у = 0 две точки пересечения с осью Х
а) Подставить в уравнение значение х, получим значение у:
х = 2
у = (-3) * 2² - 5 * 2 - 2
у = -12 - 10 - 2
у = -24
х = -1
у = (-3) * (-1)² - 5 * (-1) - 2
у = -3 + 5 - 2
у = 0
б) По условию у = 0, подставляем в уравнение (ищем х):
0 = -3х² - 5х - 2
3х² + 5х + 2 = 0, квадратное уравнение, ищем корни:
х первое, второе = ( -5 ± √25-24) / 6
х первое, второе = ( -5 ± √1) / 6
х первое, второе = ( -5 ± 1) / 6
х первое = -1
х второе = 2/3
Так как график - парабола, при у = 0 две точки пересечения с осью Х