М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Шаша676
Шаша676
07.02.2023 21:05 •  Алгебра

11 класс. Уравнение с параметром. ответ — [2,5; 3,5], у меня не сходится (получается [2,8; 6]).

👇
Ответ:
robdars
robdars
07.02.2023

рассмотрим наше уравнение:

\displaystyle 4cos^43x-4(a-3)cos^23x-(2a-5)=0

выполним замену cos²3x=t; t≥0

\displaystyle 4t^2-4(a-3)t-(2a-5)=0

чтобы уравнение имело хотя бы один корень надо чтобы D≥0

\displaystyle D=16(a-3)^2+4*4(2a-5)=16(a-2)^2\geq 0

Это неравенство выполняется для любых a

тогда проверим корни, необходимо чтобы t≥0

\displaystyle t_{1.2}=\frac{4(a-3)\pm 4|a-2|}{8}=\frac{(a-3)\pm |a-2|}{2}

рассмотрим первый корень

\displaystyle t_1=\frac{(a-3)+|a-2|}{2}\\\\1.1.a\geq 2\\\\t_1=\frac{a-3+a-2}{2}=\frac{2a-5}{2}\geq 0\\\\a\geq 2.5\\\\1.2. a

значит при а≥2.5 мы получим один положительный корень (относительно t)

проверим второй корень

\displaystyle t_2=\frac{(a-3)-|a-2|}{2}\\\\2.1. a\geq 2\\\\t_2=\frac{a-3-a+2}{2}=-\frac{1}{2}\\\\2.2. a

тут положительных корней не получим.

значит рассмотрим один положительный корень t=(2a-5)/2.  при а≥2,5

выполним обратную замену

\displaystyle cos^23x=\frac{2a-5}{2}\\\\cos3x=\pm\sqrt{\frac{2a-5}{1}}\\\\|cos3x|\leq 1; \pm\sqrt{\frac{2a-5}{2}}\leq 1

рассмотрим положительный корень

\displaystyle \sqrt{\frac{2a-5}{2}}\leq 1; \frac{2a-5}{2}\leq 1; 2a-5\leq 2; a\leq 3.5

рассмотрим отрицательный корень

\displaystyle -\sqrt{\frac{2a-5}{2}}\leq 1; \sqrt{\frac{2a-5}{2}}\geq -1

выполняется для всех а≥2.5

Собираем все вместе 2,5≤а≤3,5

4,4(5 оценок)
Открыть все ответы
Ответ:
urukhaiz
urukhaiz
07.02.2023
a-x^2 \geq |sinx|

График  y=|sinx|  расположен выше оси ОХ.
Точки пересечения с осью ОХ:  x=\pi n\; ,\; n\in Z .
Графики функций  y=a-x^2 - это параболы , ветви
которых направлены вниз, а вершины в точках (0, а).
При х=0  sin0=0 и точка (0,0) является точкой пересечения 
графика у=|sinx| и оси ОУ, на которой находятся вершины парабол.
При а=0 графики y=|sinx| и y=x² имеют одну точку пересе-
чения - (0,0), при а<0  точек пересе-
чения вообще нет. А при а>0 будет всегда 2 точки пересе-
чения этих графиков и соответственно, будет выполняться
заданное неравенство.
То есть одна точка пересечения при а=0.
ответ:  а=0.
При каком значении параметра а неравенство а-x^2больше или равно|sinx| имеет единственное решение? н
4,5(7 оценок)
Ответ:
sirzikova
sirzikova
07.02.2023
Почему-то удалили мой ответ, пишу еще раз.
Формула суммы кубов
(3x+2)(9x^2-6x+4) = (3x)^3 + 2^3 = 27x^3 + 8
Подставляем
(27x^3 + 8)(3x + 4) = (3x - 4)^2 + 32
81x^4 + 24x + 108x^3 + 32 = 9x^2 - 24x + 16 + 32
81x^4 + 108x^3 - 9x^2 + 48x - 16 = 0
Корни у этого уравнения - иррациональные. Подберем примерно.
f(0) = -16 < 0
f(-1) = 81 - 108 - 9 - 48 - 16 = -100 < 0
f(-2) = 81*16 - 108*8 - 9*4 - 48*2 - 16 = 284 > 0
-2 < x1 < -1
f(1) = 81 + 108 - 9 + 48 - 16 = 212 > 0
0 < x2 < 1
Можно уточнить до 0,1
f(-1,6) = 81*1,6^4 - 108*1,6^3 - 9*1,6^2 - 48*1,6 - 16 = -27,37 < 0
f(-1,7) = 81*1,7^4 - 108*1,7^3 - 9*1,7^2 - 48*1,7 - 16 = 22,36 > 0
-1,7 < x1 < -1,6

f(0,3) = 81*0,3^4 + 108*0,3^3 - 9*0,3^2 + 48*0,3 - 16 = 1,16 > 0
f(0,2) = 81*0,2^4 + 108*0,2^3 - 9*0,2^2 + 48*0,2 - 16 = -5,77 < 0
0,2 < x2 < 0,3

Но я чувствую, что в задаче ошибка, потому что в 7 классе такое может быть только если на олимпиаде.
4,7(72 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ