Завод должен 120 деталей к сроку, он стал выполнять на 20 деталей в час больше и закончил на 1 час раньше. Сколько деталей в час должно быть по по плану ?
пусть х - деталей в час должен был по плану выполнять завод, (x+20) - деталей в час должен по факту выполнял завод.
Раскрывая скобки в левой части, получаем неравенство x²-6x-16≥2x²+6x+11. Перенеся левую часть неравенства вправо, получаем неравенство x²+12x+27=(x+3)(x+9)≤0. Значит, квадратный трёхчлен x²+12x+27 обращается в 0 при x=-3 и при x=-9. Пусть x<-9 - например, пусть x=-10. Тогда (-10)²+12*(-10)+27=7>0, так что при x<-9 x²+12x+27>0. Пусть теперь -9<x<-3 - например, пусть x=-5. Тогда (-5)²+12*(-5)+27=-8<0, так что при -9≤x≤-3 x²+12x+27≤0. Пусть, наконец, x>-3 - например, пусть x=0. Тогда 0²+12*0+27=27>0, так что при x>-3 x²+12x+27>0. ответ: x ∈ [-9;-3], наименьшее значение x=-9, наибольшее - x=-3.
Ищем производную и приравниваем её к нулю:
у'=4/(cos^2(x))-4=0
у'=4sin^2(x)/cos^2(x)
y'>=0 для всех х, значит заданная функция неубывающая при всех х
у'=0. Отсюда х=pi*k. Промежутку [0;pi/4] принадлежит только х=0.
Значит наименшее значение функции будет при х=0 и оно равно 8 (подставляем 0 в функцию)
Ура!