Пусть 2-я труба наполняет бассейн за х часов, тогда 1-я труба наполняет бассейно за (х -18) часов. производительность (работа за 1 час) 1-й трубы: 1/(х -18), 2-й трубы: 1/х. их общая производительность: 1/(х -18) + 1/х. работая вместе, они сделали всю работу (равную 1) за 12 часов (1/(х -18) + 1/х)·12 = 112·(х + х - 18) = х² - 18х х² - 42х + 216 = 0 d = 42² - 4·216 = 900 √d = 30 х₁ = (42 - 30) : 2 = 6 (не подходит по условию , даже работая вместе трубы наполняют бассейн за 12 часов! ) х₂ = (42 + 30) : 2 = 36 ответ: 2-я труба наполняет бассейн за 36 часов
12мин=0,2ч 45мин=0,75ч всё расстояние между А и Б примем за единицу х-время велосипедиста х-0,75 время мотоциклиста 1/х скорость велосипедиста 1/(х-0,75) скорость мотоциклиста 1/0,2=5 скорость сближения 1/х+1/(х-0,75)=5 х-0,75+х=5х(х-0,75) 5х²-3,75х+0,75=0 разделим всё на 5 х²-1,15х+0,15=0 Д=1,15²-4*0,15=1,3225-0,6=0,7225=0,85² х₁=(1,15-0,85):2=0,15ч=15/100 от 60мин =9минут, что не может удовлетворять условию, так как они вместе до встречи едут 12мин, значит , за 9 мин проехать всё он никак не может х₂=(1,15+0,85):2=1час ответ : велосипедист проезжает за 1 час
Объяснение:
1.
a) ОДЗ: x²-9≠0 (x+3)(x-3)≠0 x₁≠-3 x₂≠3.
б)
x²-2x-15≠0 D=64 √D=8
x₁≠-3 x₂≠5.
x²+8x+15≠0 D=4 √D=2
x₃≠-5 x₄≠-3. ⇒
ОДЗ: x₁≠-5 x₂≠-3 x₃≠5.
2.
a) (x²+4)/(x-1)=5x/(x-1) ОДЗ: x-1≠0 x≠1
x²+4=5x
x²-5x+4=0 D=9 √D=3
x₁=1 ∉ОДЗ х₂=4
ответ: х=4.
б)
(x+3)/x=(2x+10)/(x-3) ОДЗ: x₁≠0 x-3≠0 x₂≠3.
(x+3)*(x-3)=x*(2x+10)
x²-9=2x²+10x
x²+10x+9=0 D=64 √D=8
ответ: x₁=-1 x₂=-9.
3.
Пусть скорость течения реки - х. ⇒
70/(10+х)=30/(10-х)
70*(10-x)=30*(10+x)
700-70x=300+30x
100x=400 |÷100
x=4.
ответ: скорость течения реки 4 км/ч.