Двузначное число, в котором х десятков и у единиц запишем как 10х+у, тогда условие задачи можно записать так: (10х+у):(х+у)=3(ост.7) 10х+у=3(х+у)+7 10х+у=3х+3у+7 10х-3х=3у-у+7 7х-7=2у 7(х-1)=2у|:2 y=7(x-1)/2 Заметим, что х≠0, т.к. х-число десятков х=1 у=7(1-1)/2=7*0/2=0/2=0 10 х=2 у=7(2-1)/2=7/2=3,5∉N х=3 у=7(3-1)/2=7*2/2=7 37 х=4 у=7(4-1)/2=7*3/2=21/2=10,5∈N x=5 y=7(5-1)/2=7*4/2=7*2=14 -не является однозначным числом
Получаем два варианта 10 и 37 10:(1+0)=10:1=10 -не подходит нашему условию (делится без остатка) 37:(3+7)=37:10=3(ост. 7) ответ: 37
Відповідь:
Натуральные числа − числа, используемые при счете (перечислении) предметов:
N
=
{
1
,
2
,
3
,
…
}
Натуральные числа с включенным нулем − числа, используемые для обозначения количества предметов:
N
0
=
{
0
,
1
,
2
,
3
,
…
}
Целые числа − включают в себя натуральные числа, числа противоположные натуральным (т.е. с отрицательным знаком) и ноль.
Целые положительные числа:
Z
+
=
N
=
{
1
,
2
,
3
,
…
}
Целые отрицательные числа:
Z
−
=
{
…
,
−
3
,
−
2
,
−
1
}
Z
=
Z
−
∪
{
0
}
∪
Z
+
=
{
…
,
−
3
,
−
2
,
−
1
,
0
,
1
,
2
,
3
,
…
}
Рациональные числа − числа, представляемые в виде обыкновенной дроби
a
/
b
, где
a
и
b
− целые числа и
b
≠
0
.
Q
=
{
x
∣
x
=
a
/
b
,
a
∈
Z
,
b
∈
Z
,
b
≠
0
}
При переводе в десятичную дробь рациональное число представляется конечной или бесконечной периодической дробью.
Иррациональные числа − числа, которые представляются в виде бесконечной непериодической десятичной дроби.
Действительные (вещественные) числа − объединение рациональных и иррациональных чисел:
R
Комплексные числа
C
=
{
x
+
i
y
∣
x
∈
R
и
y
∈
R
}
,
где
i
− мнимая единица.
N
⊂
Z
⊂
Q
⊂
R
⊂
C
структура числовых множеств
Пояснення:
Прости я не умею объяснять