М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
serzhsitch
serzhsitch
30.11.2022 02:44 •  Алгебра

1) Прямая y=2x+13 является касательной к графику функции . Найдите абсциссу точки касания.

2) Найдите точку минимума функции

👇
Ответ:
dashden354
dashden354
30.11.2022

1) Уравнение касательной имеет вид    y=f(x_0)+f`(x_0)(x-x_0)

С этого уравнения видно, что коэффициент возле переменной является значением производной функции в точке касания. Найдём же эту точку.

y=x^3-3x^2-22x-15\\y`=3x^2-6x-22\\3x^2-6x-22 = 2\\3x^2-6x-24=0 \ \ \ \ \ \ -3(x^2-2x-8)=0\\x^2-2x-8=0\\D=4-4*(-8) = 4+32=36 \ \ \ \sqrt{D} =6\\x_{1,2}=\frac{2\pm 6}{2} \ \ \ x_1=4 \ \ \ x_2=-2

Проведём проверку найденных корней:

y=f(4) + f`(4)(x-4)\\y=64-3*16-22*4-15 + (3*16-6*4-22)(x-4)\\y=-87+2(x-4) = 2x-95

Первый корень дал нам уравнение другой касательной,он нам не подходит

y=f(-2)+f`(-2)(x+2)\\y=-8-3*4+44-15 + (3*4+6*2-22)(x+2)\\y=9+2(x+2) = 2x+13

Мы нашли абсциссу точки прикосновения, это -2

ответ: х= -2

2) Нужно найти производную функции и приравнять её к нулю, чтобы проверить критические точки на наличие экстремума

y=log_6(x^2-7x+16) +7\\ (log_6(x^2-7x+16) +7))` = \frac{2x-7}{(x^2-7x+16)*ln6} \\2x-7=0 \ \ \ | \ \ \ x^2-7x+16\neq 0\\x=3.5 \ \ \ \ \ \ \ | \ \ D=49-4*16 = 49-64=-15 \ \ \ \\-x^2-7x+16 x\neq 0 \ \ \ x\in R

Мы нашли стационарную точку х = 3.5 , проверим её на экстремум с метода интервалов.

Подставляю в нашу производную значения с интервалов (подставляем только в числитель, так как знаменатель всегда положителен и мы это доказали выше)

Получаем такие знаки на интервалах:

Видим, что производная при переходе через точку х = 3.5 меняет свой знак с минуса на плюс, что является достаточным условием существования минимума функции в данной точке.

ответ: х = 3.5 - точка минимума функции


1) Прямая y=2x+13 является касательной к графику функции . Найдите абсциссу точки касания. 2) Найди
4,5(64 оценок)
Открыть все ответы
Ответ:
BaRiGaSimon
BaRiGaSimon
30.11.2022
Задача проще, чем кажется:) Сначала надо представить график функции
у = -x^3+3x+2 - это кубическая парабола. у = а - горизонтальная прямая.
прямая пересекает параболу - количество точек пересечения может быть такое: 1, 2 или 3. Две точки пересечения - значит, что у исходного уравнения тоже два решения. Две точки пересечения могут быть только в тех точках, где производная равна нулю.:
у = -x^3+3x+2
y' = -3x^2+3
y' = 0 при х = 1 и х = -1 (это точки экстремума, видно на графике)
а = у(х) = у(-1) = 0
а = у(х) = у(1) = 4

ответ: а = 0 и а = 4.

При каких значениях параметра а уравнение а=-x^3+3x+2 имеет два корня.
4,5(49 оценок)
Ответ:
eerihovp08oqz
eerihovp08oqz
30.11.2022

Пусть скорость до увеличения была х км/ч, тогда после увеличения стала (x+10) км/ч. Время пути поезда до увеличения скорости: \dfrac{60}{x} ч.

Время пути поезда после увеличения скорости: \dfrac{60}{x+10} ч.

Известно, что поезд был задержан на станции на 12 мин = 12/60 ч = 1/5 ч

Составим уравнение:

\dfrac{60}{x}-\dfrac{60}{x+10}=\dfrac{1}{5}~~~\bigg|\cdot 5x(x+10)\ne0\\ \\ 300(x+10)-300x=x(x+10)\\ \\ 300x+3000-300=x^2+10x\\ \\ x^2+10x-3000=0

По т. Виета

x_1=-60 - не удовлетворяет условию;

x_2=50 км/ч — скорость поезда до увеличения скорости (или первоначальная скорость)

50 + 10 = 60 км/ч — скорость поезда после увеличения скорости(или новая скорость).



ответ: первоначальная скорость поезда равна 50 км/ч, а после новая скорость — 60 км/ч.

4,6(27 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ