Пусть х(км/ч) -скорость течения реки.
у(км/ч) -собственная скорость катера.
Тогда скорость катера по течению реки равна (х+у) км/ч,
а против течения (у-х) км/ч.
По условию по течению катер км), т.е. 5/3 х +5/3 у(км),
а против течения 24(км), т. е. 1,5 у -1,5 х (км).
(5/3 - это 1час 20мин.)
5/3 х +5/3 у =28 домножим на 3
1,5 у-1,5 х=24 домножим на 10
5х+5у=84
15у-15х=240 разделим на 3
5х+5у=84
5у-5х=80
Решим систему сложения двух уравнений:
10у = 164
5у-5х = 80
5у - 5х = 80
у = 16,4
5*16,4 - 5х = 80
у=16,4
-5 х = 80-82
у = 16,4
-5 х = -2
у = 16,4
х = 0,4
у = 16,4
ответ: 0,4 (км/ч) - скорость течения реки
ответ:
1)
пусть х км/ч - скорость пассажирского поезда, тогда скорость товарного поезда составляет х-20 км/ч.
пассажирский поезд пройдет расстояние, равное 120 км, за t=s: v= часов. товарный поезд пройдет это же расстояние за
часов, что на 1 час больше.
составим и решим уравнение:
- = 1 (умножим на х(х-20), чтобы избавиться от дробей)
- =1*x(x-20)
120*х - 120*(х-20)=х²-20х
120х-120х+2400-х²+20х=0
х²-20х-2400=0
d=b²-4ac=(-20)²+4*1*(-2400) = 400+9600=10000 (√10000=100)
x₁ = = 60
x₂ = = -40 - не подходит, поскольку х < 0
скорость пассажирского поезда равна 60 км/ч, тогда скорость товарного составит х-20=60-20=40 км/ч.
проверка:
120: 60=2 (часа) - пассажирский поезд проедет расстояние, равное 120 км.
120: 40=3 (часа) - товарный поезд проедет расстояние, равное 120 км.
3-2=1 час
2
1) пусть х км/ч — скорость второго автомобиля ( х > 0).
2) тогда (х + 10) км/ч — скорость первого.
3) (300 : (х + 10)) ч. — столько времени уходит у первого автомобиля на преодоление пути в 300 км.
4) (300 : х) ч. — за столько времени второй автомобиль проезжает те же 300 км.
5) по условию первый автомобиль тратит на данный путь на 1 час меньше, чем второй, поэтому записываем равенство:
300 : х - 300 : (х + 10) = 1.
6) решаем уравнение:
300 * (х + 10) - 300 * х = х * (х + 10);
300х + 3000 - 300х = х^2 + 10х;
х^2 + 10х - 3000 = 0.
по теореме виета находим, что х1 = -60, х2 = 50
7) так как -60 < 0, то х1 не является решением .
8) значит, х = 50 км/ч — скорость второго автомобиля.
9) узнаем скорость первого:
50 + 10 = 60 км/ч.
ответ: 60 и 50 км/ч.