Пусть через х минут после запуска третьего станка настал тот момент, о котором говорится в условии - "каждый станок выполнил одну и ту же часть задания". Тогда второй станок работал уже (х+35) минут, а первый - (х+35+20)=(х+55) минут.
Пусть через у минут после наступления вышеупомянутого момента третий станок завершил работу. Тогда первый станок завершил работу через (y+88) минут. Предположим, что второй станок завершил работу через (у+а) минут, где а - искомое время.
Тогда можно составить таблицу, в которой первый, второй и третий столбец соответствуют станкам, первая строка - времени до наступления "момента", вторая строка - после наступления "момента".
Так как времена в первой строке соответствуют одинаковым работам, и времена во второй строке соответствуют одинаковым работам, то их можно считать пропорциональными:
Любое нечётное число можно записать в виде 2n-1, где n∈z (множество целых чисел). у нас три последовательных нечётных числа. каждое последующее нечётное число на 2 больше предыдущего (например, 1, 3, 5, 7 и так далее). обозначим минимальное из наших чисел 2n-1. тогда следующее будет 2n-1+2=2n+1, а последнее 2n+1+2=2n+3. эти числа в порядке возрастания расположатся, очевидно: 2n-1; 2n+1; 2n+3. по условию : (2n+1)(2n+-1)(2n+1)=76 (2n+1)(2n+3-(2n-=0 (2n+1)(2n+3-2n+1)-76=0 (2n+1)4-76=0 8n+4-76=0 8n-72=0 n=72/8 n=9 тогда искомые числа будут: 2n-1=2*9-1=18-1=17 2n+1=2*9+1=18+1=19 2n+3=2*9+3=18+3=21
x1+x2=-2/3
x1^x2=5/3
тогда; 3(x+2/3)(x-1.2/3)=(x+2)(x-1.2/3)