Пользуясь графиком функции y=x³, найдите несколько значений :а)x при которых значения функции больше -3, но меньше 8 б)x при котором значения функции больше 4, меньше 4.
посмотрев на формулу данной прогрессии, мы видим, что её нечетные члены отрицательны и их значения убывают, а четные члены положительны, их значения также убывают(у нечетных членов степень при q четная, а у четных - нечетная), то есть четные члены больше нечетных, отсюда следует, что не является верным неравенство г)
2*4^x-3*10^x=5*25^xРазделим правую и левую части на 25^x. Получим 4^x 10^x2 - 3 = 5 25^x 25^x Так как степени у числетелей и знаменателей одинаковые можно поступить следующим образом 2* (4 : 25)^х - 3*(10 : 25)^х = 5Во второй дроби можно сократить 10 и 25 на 5. Получаем 2* (4 : 25)^х - 3*(2 : 5)^х = 5 Так как 4 = 2^2, a 25 = 5^2, получим следующее 2* (2 : 5)^2х - 3*(2 : 5)^х = 5 Введем новую переменную t = (2 : 5)^хПолучим новое уравнение2*t^2 - 3*t = 52*t^2 - 3*t - 5 = 0Решаем через дискриминант. a = 2, b = -3, c = -5D = b^2 -4ac = 9 - 4*2*(-5) = 9 + 40 = 49t(1) = (3 - 7) : 4 = -1t(2) = (3 + 7) : 4 = 2,5 x = -1 нам не подходит, так как ни при каких х (2 : 5)^х не будет отрицательным.Тогда получаем (2 : 5)^х = t(2) (2 : 5)^х = 5 : 2 (2 : 5)^х = (2 : 5)^(-1) х = -1 ответ: х = -1
1) (x2-9)(x+4)<0
(x2-9)(x+4)=0
x2-9=0 x+4=0
x2=9 x=-4
x=3,-3
x(-бесконечность;-4)u(-3;3)
2)y2-xy=33 y2-11y-y2=33 -11y=33 y=-3
x-y=11 x=11+y x=11+y x=11-3=8
(8;-3)
3)a1=16, d=20-16=4
an=16+4(n-1)
а)16+4n-4=44
4n+12=44
4n=32
n=8 т.к. 8 целое число, значит подходит
б)16+4n-4=52
4n=40
n=10 подходит
в)4n+12=68
4n=54
n=54\4 нецелое число не подходит
г)4n+12=64
4n=52
n=13 подходит
ответ: подходят варианты а, б и г
4)bn=b1*q^n-1
bn=-128*(-1\2)^n-1
посмотрев на формулу данной прогрессии, мы видим, что её нечетные члены отрицательны и их значения убывают, а четные члены положительны, их значения также убывают(у нечетных членов степень при q четная, а у четных - нечетная), то есть четные члены больше нечетных, отсюда следует, что не является верным неравенство г)
5)a)(n+2)!(n+1)>(n+1)!(n+2)
т.к. n!+2!=(n+2)!
n!+1!=(n+1)!, n!=n!, а 1!=1, 2!=1*2=2