Решать такое надо графически.
Построим графики уравнений f(x,y)=0 (к 1-му неравенству); g(x,y)=0 (ко 2-му неравенству)
В 1-м неравенстве видно, что это эллипс.
Приведу его к каноническому виду:
Это значит, что центр эллипса в точке (2;-3), по x он растянется максимум на 4 единицы, по у на 2.
Во 2-м видно, что будут 2 прямые.
Построили графики на одной системе координат.
1-е неравенство говорит нам, что это геометрическое место точек, которые находятся ВНУТРИ эллипса, причем не захватывая его контур.
Теперь ко 2-му неравенству.
Прямые пересекаются (у них разные угловые коэффициенты) и образуют перекрестие, деля плоскость на 4 части. Нам будут нужны 2 части, это верхняя часть и нижняя, можно это проверить, подставив точку (0;0) во 2-е неравенство и (0;-5).
Получаются два сектора, причем прямые в них включатся в зону, так как 2-е неравенство системы нестрогое, а вот контуры эллипса как бы выколоты. Штриховкой я отметил нужную область.
3x-ay+bz
a=3c, b=10c³, x=5c³+2, y= 5c²-c+13, z= 5c-1
3(5c³+2)-3c(5c²-c+13)+10c³(5c-1)= 15c³+6-15c³+3c²-39c+50c⁴-10c³= 50c⁴-10c³+3c²-39c+6