Объяснение:
У нас есть V (скорость), t (время) и S (расстояние)
Лодка двигалась ПО течению реки. Ее собственная скорость остаётся неизвестна. Соответственно:
1) х км/ч + 4км/ч = это общая скорость с которой двигалась лодка.
Далее у нас даётся время за которое лодка расстояние.
2) Время: за 6 часов.
3) Расстояние: 102 километра.
Мы записываем таблицу
V T S
x+4. 6. 102
И тут мы видим что нам дано все из данных. Это уравнение:
(х+4) × 6 = 102
6х+24=102
6х=78 |: 6
х=13 км/ч скорость лодки.
Проверяем: (13+4)×6=102
Рассмотрим функцию у = -х² + 6х - 4. Это квадратичная пирамида, ветви вниз. Наивысшей точкой пирамиды (наибольшим значением у) будет значение координаты у вершины пирамиды.
Найдем координаты вершины пирамиды.
х0 = (-b/2a) = -6/(-2) = 3.
у0 = -3² + 6 * 3 - 4 = -9 + 18 - 4 = 5.
ответ: наибольшее значение функции равно 5.
Найдем производную функции:
у = -х² + 6х - 4.
у' = -2х + 6.
Найдем нули производной: у' = 0,
-2х + 6 = 0;
-2х = -6;
х = 3.
Определим знаки производной на каждом участке:
(-∞; 3) пусть х = 0; у'(0) = -2 * 0 + 6 = 6 (плюс, функция возрастает).
(3; +∞) пусть х = 4; у'(4) = -2 * 4 + 6 = -2 (минус, функция убывает).
Следовательно, х = 3 - это точка максимума функции.
Найдем максимальное значение функции в точке х = 3.
у(3) = -3² + 6 * 3 - 4 = -9 + 18 - 4 = 5.
ответ: наибольшее значение функции равно 5.
Объяснение:
a∉{0;±1;0,25}
Объяснение:
(x² - (3a + 1)x + 2a² + a)(x² + (2a - 1)x - 3a² + a) = 0
Чтобы данное уравнение имело не менее трёх корней необходимо чтобы одно из уравнений
1) x² - (3a + 1)x + 2a² + a=0
2) x² + (2a - 1)x - 3a² + a=0
имело не менее одного, а второе не менее двух корней.
D₁=(-(3a + 1))² -4(2a² + a)=9a²+6a+1-8a²-4a=a²+2a+1=(a+1)²
D₂=(2a - 1)² -4(- 3a² + a)=4a² -4a+1+12a²-4a=16a²-8a+1=(4a-1)²
Очевидно,что D₁≥0 и D₂≥0.
1) D₂>0 и D₁=0⇒а=-1
x₁=(3a + 1)/2=-1
x₂,₃=(-(2a - 1)±(4a-1))/2
x₂=(-(2a - 1)+(4a-1))/2=a=-1
x₃=(-(2a - 1)-(4a-1))/2=1-3a=4
2) D₁>0 и D₂=0 ⇒а=0,25
x₁,₂=((3a + 1)±(a+1))/2=(1,75±1,25)/2
x₁,₂=(1,75-1,25)/2=0,25
x₁,₂=(1,75+1,25)/2=1,5
x₃=-(2a - 1)/2=0,25
3) D₁>0 и D₂>0
x₁,₂=((3a + 1)±(a+1))/2-два разных корня, x₃,₄=(-(2a - 1)±(4a-1))/2-два разных корня.
Теперь же нужно разобрать случай равенства одного из двух корней x₁,₂ с одним из двух корней x₃,₄
1) ((3a + 1)+(a+1))/2=(-(2a - 1)+(4a-1))/2
4a+2=2a
a=1
2) ((3a + 1)+(a+1))/2=(-(2a - 1)-(4a-1))/2
4a+2=-6a+2
a=0
3) ((3a + 1)-(a+1))/2=(-(2a - 1)+(4a-1))/2
2a=2a
∀a
4) ((3a + 1)-(a+1))/2=(-(2a - 1)-(4a-1))/2
2a=-6a+2
a=0,25
В итоге можно сказать, что уравнение имеет не более трёх различных корней. Получается оно имеет ровно три различных корня при выполнении след. условий.
a∉{0;±1;0,25}