Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
Я приложу рисунок с делением уголком для примеров 7/5 и 3/16, остальные делаются точно также. 7/5 = 1,4 Объясняю подробно, как делить уголком. 7 делим на 5, получаем в частном 1. Умножаем 1 на 5, получаем 5. Пишем 5 под 7 и вычитаем, получаем 2. 2 меньше 5, поэтому в частном ставим запятую, а к 2 приписываем 0, получаем 20. Делим 20 на 5, получаем 4. Умножаем 4 на 5, получаем 20. Пишем 20 под 20, вычитаем, получаем 0. Деление окончено. 3/16 = 0,1875 Тут сразу 3 меньше 16, поэтому к 3 приписываем 0, а в частном тоже ставим 0 и запятую. Далее все точно также, как в 1 примере. Другие примеры: 48/15 = 16/5 = 3,2 7/4 = 1,75 3/2 = 1,5 9/5 = 1,8 625/125 = 5 860/400 = 43/20 = 2,15 33/60 = 11/20 =0,55
начертить координатную плоскость...