Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
Решение нестандартное немного, надеюсь, что поймешь. Краткий экскурс: Возьмем, например, уравнение x^2-11x+30=0. У него два корня: +5 и +6 И это уравнение можно записать в виде (x-5)(x-6)=0. Убедись сам/а, перемножив все слагаемые и приведя к общему виду. И так, по заданию один из корней равен 4. Тогда: (x-4)(x-n)=0 x-4 я надеюсь понял/а что такое, а вот n - это второй корень уравнения. Смотрим еще раз наше уравнение исходное. x^2+px+c=0 c=36 на что надо домножить -4 чтобы получить 36? -4x=36; x=36/-4=9 Подставляем n=9
(x-4)(x-9)=0 Перемножим слагаемые x^2-9x-4x+36=0; x^2-13x+36=0 p=-13. Один по крайней мере нашел. Очень надеюсь, что доступно объяснил. :)
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например,
, но сейчас это не нужно), нам повезло, это 32
Учитываем, что
, получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.