22/25
Объяснение:
(a+b)2 - (a2-b2) ( я преобразовала последние две скобки по формуле сокращенного умножения)
Дальше рассматриваем вторую скобку. Ее мы наоборот должны разложить, но также по формуле сокращенного умножения. Мы делаем так: (a2+4ab +b2)-(a2-b2) . Теперь мы должны раскрыть скобки. Но мы должны помнить про минус перед скобкой. Он меняет знаки.
a2+4ab +b2-a2+b2= Теперь уничтожим a2 и (-a2)
Остается 4ab +b2+b2= 4ab+2b2= Выносим b за скобки. Получается 2b(2а+b) Все это готовый ответ. Теперь подставляем. a=1 , b=1/5
2*1/5(2*1 +1/5)=2/5(2 +1/5)= 2/5*11/5= 22/25
Решение системы уравнения v=3; u=2.
Объяснение:
Решить систему уравнений:
2u-v=1
3u+2v=12 методом сложения
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на 2:
4u-2v=2
3u+2v=12
Складываем уравнения:
4u+3u-2v+2v=2+12
7u=14
u=2
Теперь подставляем значение u в любое из двух уравнений системы и вычисляем v:
2u-v=1
-v=1-2u
v=2u-1
v=2*2-1
v=3
Решение системы уравнения v=3; u=2.