В решении.
Объяснение:
1. Найдите приближенное значение:
√21 ≈ 4,6;
√70 ≈ 8,4;
√40 ≈ 6,3.
2. Извлеките корень:
√(49x²) = 7х;
2√(0,09у¹² ) = 2*0,3у⁶ = 0,6у⁶;
0,5√(900с⁷) = 0,5√(900с⁶*с) = 0,5*30с³√с = 15с³√с.
3. Сравните числа:
Нужно внести число перед корнем под корень, возведя перед этим в квадрат и сравнивать подкоренные выражения.
а) 6√3 и 7√2
√36*3 и √49*2
√108 и √98
6√3 > 7√2;
б) 0,5√8 и 0,3√6
√0,25*8 и √0,09*6
√2 и √0,54
0,5√8 > 0,3√6
4. Решите уравнения:
а) х² = 16;
х=±√16
х=±4
б) 2х² – 10 = 0;
2х²=10
х²=5
х=±√5;
в) √х= -3;
х= (-3)²
х=9;
г) 3√х-18=0
3√х=18
√х=18/3
√х=6
х=6²
х=36.
5. Упростите выражения :
а) √((√14-4)²)+√((√14+1)²) =
=(√14-4+√14+1)=
=2√14-3;
б) √((1-√12)²)-√((4-√12)²) =
=(1-√12-4+√12)=
= -3.
a1 = -9.6
a2 = -8.3
d = a2 - a1 = -8.3 - ( -9.6) = 1,3
аn = a1 + (n - 1)d ≥ 0
-9.6 + (n - 1)*1,3 ≥ 0
-9.6 + 1,3n - 1,3 ≥ 0
1,3n - 10,9 ≥ 0
1,3n ≥ 10,9
n ≥ 10,9 / 1,3
n ≥ 8,38... => номер первого неотрицательного члена прогрессии n = 9
Значит первые восемь её членов отрицательны. Найдем их сумму:
Sn = 2a1 + (n - 1)d * n
2
S8 = 2*( -9.6) + 7*1,3 * 8 = ( -19,2 + 9,1)* 4 = ( -10,1)* 4 = - 40,4
2
ОТВЕТ: -40,4