В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 2). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
2 = √а
(2)² = (√а)²
4 = а
а=4;
б) Если х∈[0; 4], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√4=2;
При х∈ [0; 4] у∈ [0; 2].
в) y∈ [9; 20]. Найдите значение аргумента.
9 = √х
(9)² = (√х)²
х=81;
20 = √х
(20)² = (√х)²
х=400;
При х∈ [81; 400] y∈ [9; 20].
г) Найдите при каких х выполняется неравенство у ≤ 3.
у ≤ 3
√х ≤ 3
(√х)² ≤ (3)²
х ≤ 9;
Неравенство у ≤ 3 выполняется при х ≤ 9.
Объяснение:
составим систему уравнений
b(5)-b(3)=1200 (1)
b(5)-b(4)=1000 (2) ⇒ b(5)= 1000+b(4) (2_2)
Добавим в систему третье уравнение b(4)²=b(5)*b(3) (3)
вычтем из уравнения (1)-(2) ⇒ b(4)-b(3)=200 ⇒ b(3)=b(4)-200 (4)
Подставим (2_2) в (3)
b(4)²=(1000+b(4))*b(3) Подставим вместо b(3) уравнение (4)
b(4)²=(1000+b(4))*(b(4)-200)
b(4)²==1000b(4)+b(4)²-200000-200b(4) [b(4)² сократим]
800 b(4)=200000 b(4)=250
b(3)=250-200=50 b(3)=50
q=b(4)/b(3)=250/50=5 q=5
b(3)=b(1)*q² ⇒ b(1)=50/25=2 b(1)=2
S(5)= b(1)(q^n-1)/(q-1)
S(5)=3125