М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
XaMeJIuoH
XaMeJIuoH
09.01.2021 17:42 •  Алгебра

Ордината точки принадлежащей графику уравнения -4x-2y=3, равна 0,5. Найти абсциссу этой точки.

👇
Ответ:
tokio272
tokio272
09.01.2021

х= -1

Объяснение:

Ордината - это значение у функции, абсцисса - это значение х.

у известен, найти х:

-4х-2у=3

-4х=3+2у

-4х=3+2*0,5

-4х=4

х= -1

4,5(43 оценок)
Открыть все ответы
Ответ:
Tomilka777
Tomilka777
09.01.2021
1)    ;
sin2x - (1-sin²x)  =0 ;
2sinxcosx -cos²x =0 ;
cosx(2sinx -cosx) =0 ;
[cosx =0 ;2sinx-cosx =0.⇔ [cosx =0 ;sinx=(1/2)cosx.⇔[cosx =0 ;tqx=1/2.
[ x=π/2 +πn ; x =arctq1/2+πn , n∈Z.

2)   ;
ctq2x*cos²x - ctq2x*sin²x =0 ;
ctq2x*(cos²x - sin²x) =0 ;
ctq2x*cos2x =0 ;
sin2x =0  * * *cos2x = ± 1 ≠0→ ОДЗ * * * 
2x =πn , n∈Z ;
x =(π/2)*n , n∈Z .

3)   ;
3sin²x/2 -2sinx/2 =0 ;
3sinx/2 (sinx/2 -2/3) =0 ;
[sinx/2 =0 ; sinx/2 =2/3 .⇒[x/2 =πn ; x/2= arcsin(2/3) +πn ,n∈Z.⇔
[x =2πn ; x= 2arcsin(2/3) +2πn ,n∈Z.

4)  ;
* *cos2α =cos²α -sin²α =cos²α -(1-sin²α)=2cos²α -1⇒1+cos2α=2cos²α * *
cos3x = 1+cos2*(3x) ;  * * * α = 3x  * * *
cos3x = 2cos²3x ; 
2cos²3x -cos3x =0 ;
2cos3x(cos3x -1/2) =0 ;
[cos3x =0 ; cos3x =1/2 ⇒[3x=π/2+πn ; 3x= ±π/3+2πn ,n∈Z.⇔
[x=π/6+πn/3 ; x= ±π/9+(2π/3)*n ,n∈Z.
4,4(56 оценок)
Ответ:
eva10072008mailru
eva10072008mailru
09.01.2021
1)-1≤sin√(2x-1)≤1
-2≤2sin√(2x-1)≤2
-2+1≤2sin√(2x-1)+1≤2+1
-1≤2sin√(2x-1)+1≤3
                                         ответ:  [-1;3]
2)2cos(x+1)>0
cos(x+1)>0
x+1>π/2+πk    (k∈Z)
x>π/2+1+πk
x>(π+2)/2+πk

3) f(x)=√x*sin2xf'(x)=1/(2√x)*2*cos2x=cosx/√x
f '(π)=cosπ/√π=-1/√π=-√π/π

4)абсциссой точки минимума функции f(x)=x^4-2x^2 на отрезан [-2;0]
f '(x)=4x³-4x=0   ⇒  x(x²-1)= 0  ⇒x=0, x²-1=0   ⇒x=0, x=1, x=-1
                      ⇒  точки минимума функции   x(1)= 0 , x(2)=1 ,  x(3)=-1
0∈[-2;0],  1∉[-2;0],  -1∈[-2;0]
                    ответ:  0, -1
4,7(99 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ