М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Olga5513
Olga5513
08.03.2020 05:49 •  Алгебра

Сравните sin П:8 и sin П:4

👇
Ответ:
MrGoudi
MrGoudi
08.03.2020

Они равны

Объяснение:

Оба равны нулю

4,7(73 оценок)
Открыть все ответы
Ответ:
yuliana577
yuliana577
08.03.2020
4x²-12xy+9y²=(2x)²-2*2x*3y+(3y)²=(2x-3y)²
-4a²+4ab-b²=-(4a²-4ab+b²)=-(2a-b)²
x²-y²-6x+9=x²-6x+9-y²=(x-3)²-y²=(x-3-y)(x-3+y)
(a+3)²-27=a²+6a-18 (у вас здесь, видимо, опечатка, т.к. разложение на множители не получается)
(a-7)³+8=(a+9)(a²+12a+39)
Уравнения:
16х²-25=0 (скорее всего здесь должен быть минус, т.к. если плюс - то решений нет)
(4х-5)(4х+5)=0
4х-5=0
4х+5=0
4х=5
4х=-5
х=1.25
х=-1.25
ответ: х1=1.25, х2=-1.25
(3х-5)²-16=0
(3х-5-16)(3х-5+16)=0
(3х-21)(3х+11)=0
3х-21=0
3х+11=0
3х=21
3х=-11
х=7
х=-1/3
ответ: х1=7, х2=-1/3
Убедительная присвойте этот ответ в качестве лучшего!
4,6(3 оценок)
Ответ:
fkghdk
fkghdk
08.03.2020

а)

y = \dfrac{4x-15}{7+8x+x^2}

Знаменатель дроби не должен быть равен нулю. Получаем:

7+8x+x^2 \neq 0\\\\x^2 + 8x + 7 \neq 0

Чтобы это решить, для начала представим, что это выражение равно нулю, тогда получим квадратное уравнение и найдём его корни.

x^2 + 8x + 7 = 0\\\\D = b^2 - 4ac = 8^2 - 4\cdot 1\cdot 7 = 64 - 28 = 36\\\\x_{1} = \dfrac{-b+\sqrt{D}}{2a} = \dfrac{-8 + 6}{2} = \dfrac{-2}{2} = \boxed{-1}\\\\\\x_{2} = \dfrac{-b-\sqrt{D}}{2a} = \dfrac{-8 - 6}{2} = \dfrac{-14}{2} = \boxed{-7}

Но так как изначально это выражение было неравно нулю, то из области определения просто вычёркиваются корни уравнения, решённого нами выше.

ответ:  x \neq -1\ ;\ x \neq -7 .

б)

y = \sqrt{11-x^2}

Подкоренное выражение всегда неотрицательно, то есть, больше или равно нулю.

11-x^2 \geq 0\\\\(\sqrt{11} - x)(\sqrt{11} + x) \geq 0

Решим неравенство методом интервалов.

Нули: -\sqrt{11}\ ;\ \sqrt{11}

          -                            +                           -

---------------------\bullet--------------------------

                    -\sqrt{11}                         \sqrt{11}

Нам нужно найти те промежутки, где выражение больше или равно нулю. Такой промежуток только один: [-\sqrt{11}\ ;\ \sqrt{11}]  , так как там "+". Этот промежуток и будет являться областью определения функции.

ответ: x \in [-\sqrt{11}\ ;\ \sqrt{11}] .

4,5(65 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ