М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Арсенал11
Арсенал11
17.11.2021 07:23 •  Алгебра

а то мну 2поставят
{3х-7у=6
{4х-7у=1​

👇
Ответ:

из 1 вычтем 2

-х=5, х=-5, подставим в 1е уравнение 7у=-3*5-6=-21, у=-3

4,6(13 оценок)
Открыть все ответы
Ответ:
FTA72артем
FTA72артем
17.11.2021
Треугольник ЕСF будет подобен треугольнику АЕD по двум углам (угол CEF равен углу AED, как вертикальные углы, угол ADE будет равен углу FCE, как накрест лежащие углы, образованные при пересечении двух параллельных прямых BC и AD секущей CD). В подобных треугольниках стороны пропорциональны, значит СF/AD = EC/ED. AB=CD=8 (как противоположные стороны параллелограмма). СD= EC+ED, а отсюда ED = CD-EC. Пусть EC=х, тогда CF/AD = х/8-х, 2/5=х/8-х, 5х=2(8-х), 7х=16, х= 2 целых 2/7. Значит, EC = 2 целых 2/7. Тогда ED=CD-EC=8-2 целых 2/7= 5 целых 5/7
4,4(78 оценок)
Ответ:
dimaloginkinozgu92
dimaloginkinozgu92
17.11.2021

ответ: (x^4 - 2x^3 + x^2)/(x^2 + x - 2) - (2x^3 + x^2 + x - 1)/(x + 2) < = 1.

вынесем x^2 в числителе первой дроби:

x^2(x^2 - 2х + 1)/(x^2 + x - 2) - (2x^3 + x^2 + x - 1)/(x + 2) < = 1.

разложим на множители x^2 - 2х + 1: по теореме виета х1 + х2 = 2; х1 * х2 = 1. корни равны 1 и 1. получается x^2 - 2х + 1 = (х - 1)^2.

разложим на множители x^2 + x - 2: по теореме виета х1 + х2 = -1; х1 * х2 = -2. корни равны -2 и 1. получается x^2 + x - 2 = (х - 1)(х + 2).

неравенство приобретает вид x^2(х - 1)^2/(х - 1)(х + 2) - (2x^3 + x^2 + x - 1)/(x + 2) < = 1.

скобка (х - 1) сокращается, получается x^2(х - 1)/(х + 2) - (2x^3 + x^2 + x - 1)/(x + 2) < = 1.

приводим к общему знаменателю: (x^2(х - 1) - (2x^3 + x^2 + x - 1))/(x + 2) < = 1;

(x^3 - х^2 - 2x^3 - x^2 - x + 1)/(x + 2) < = 1;

(-x^3 - 2х^2 - x + 1)/(x + 2) < = 1.

переносим 1 в левую часть и приводим к общему знаменателю:

(-x^3 - 2х^2 - x + 1)/(x + 2) - 1 < = 0;

(-x^3 - 2х^2 - x + 1 - х - 2)/(x + 2) < = 0;

(-x^3 - 2х^2 - 2x - 1)/(x + 2) < = 0.

вынесем (-1) из числителя и умножим неравенство на (-1):

-(x^3 + 2х^2 + 2x + 1)/(x + 2) < = 0;

(x^3 + 2х^2 + 2x + 1)/(x + 2) > = 0.

разложим знаменатель на множители:

x^3 + 2х^2 + 2x + 1 = (x^3 + 1) + (2х^2 + 2x) = (х + 1)(х^2 - х + 1) + 2х(х + 1) = (х + 1)(х^2 - х + 1 + 2х) = (х + 1)(х^2 + х + 1).

получается неравенство (х + 1)(х^2 + х + 1)/(x + 2) > = 0.

решим неравенство методом интервалов:

найдем корни неравенства:

х + 1 = 0; х = -1.

х^2 + х + 1 = 0; d = 1 - 4 = -3 (нет корней).

х + 2 = 0; х = -2.

расставляем знаки неравенства: (+) -2 (-) -1 (+).

так как неравенство имеет знак > = 0, то решением неравенства будут промежутки (-∞; -2] и [-1; +∞).

объяснение:

4,7(35 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ